CMOS compatible integrated PZT capacitors

被引:0
|
作者
Evans, JT [1 ]
Boyer, LL [1 ]
Suizu, RI [1 ]
Velasquez, G [1 ]
机构
[1] Radiant Technol Inc, Albuquerque, NM USA
来源
FERROELECTRIC THIN FILMS VI | 1998年 / 493卷
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The fabrication of high yielding ferroelectric capacitors on CMOS wafers is difficult due to the negative impact of post-capacitor process steps, especially the interlayer dielectric and the metal interconnect sinter. Proper selection of the process for each layer of the capacitor structure is necessary to minimize hysteresis damage to the ferroelectric capacitors during their construction. The authors fabricated integrated PZT capacitors on blank silicon wafers using lift off processes for the bottom and top electrodes and a combination titanium dioxide/silicon dioxide dielectric between the ferroelectric capacitors and the metal interconnect layer. A 15 minute nitrogen anneal at 450 degrees centigrade after the metal interconnect patterning did not damage the capacitor hysteresis loops. Statistical testing of over 700 capacitors for shorts indicated a defect rate of 127 defects per square centimeter. This is sufficiently low enough to generate 50% yield in a production 64Kbit double-sided-sense nonvolatile memory. At 3.5V, the capacitors generated 14.0 microcoulombs per square centimeter with a standard deviation of 2.3 microcoulombs per square centimeter. The authors have set a target for future lots of 20 defects per square centimeter with 32 microcoulombs per square centimeter at 2.0V with a standard deviation of 1.6 microcoulombs per square centimeter.
引用
收藏
页码:287 / 290
页数:4
相关论文
共 50 条
  • [21] A CMOS-COMPATIBLE MONOLITHIC CONDUCTIVITY SENSOR WITH INTEGRATED ELECTRODES
    KORDAS, N
    MANOLI, Y
    MOKWA, W
    ROSPERT, M
    SENSORS AND ACTUATORS A-PHYSICAL, 1994, 43 (1-3) : 31 - 37
  • [22] Lifetime extrapolation of PZT capacitors
    Bouyssou, E
    Guegan, G
    Jerisian, R
    INTEGRATED FERROELECTRICS, 2005, 73 : 49 - 56
  • [23] Electrophysical Properties of Integrated Ferroelectric Capacitors Based on Sol-Gel PZT Films
    Delimova, L. A.
    Guschina, E. V.
    Yuferev, V. S.
    Grekhov, I. V.
    Seregin, D. S.
    Vorotilov, K. A.
    Sigov, A. S.
    FERROELECTRICS, 2015, 484 (01) : 32 - 42
  • [24] A fully integrated CMOS and high voltage compatible RF MEMS technology
    Guan, LP
    Sin, JKO
    Liu, HT
    Xiong, ZB
    IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2004, TECHNICAL DIGEST, 2004, : 35 - 38
  • [25] Monolithically-integrated distributed feedback laser compatible with CMOS processing
    Magden, Emir Salih
    Li, Nanxi
    Purnawirman
    Bradley, Jonathan D. B.
    Singh, Neetesh
    Ruocco, Alfonso
    Petrich, Gale S.
    Leake, Gerald
    Coolbaugh, Douglas D.
    Ippen, Erich P.
    Watts, Michael R.
    Kolodziejski, Leslie A.
    OPTICS EXPRESS, 2017, 25 (15): : 18058 - 18065
  • [26] CMOS-Compatible MESFETs for High Power RF Integrated Circuits
    Mehr, Payam
    Moallemi, Soroush
    Zhang, Xiong
    Lepkowski, William
    Kitchen, Jennifer
    Thornton, Trevor J.
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2019, 32 (01) : 14 - 22
  • [27] CMOS compatible integrated thermoelectric sensors usog novel frontside micromachining
    Socher, E
    Bochobza-Degani, O
    Nemirovsky, Y
    SENSORS AND MICROSYSTEMS, 2000, : 313 - 316
  • [28] Hybrid CMOS-compatible Material and Device Platform for Integrated Nanophotonics
    Hosseinnia, Amir H.
    Maoradinejad, Hesam
    Sodagar, Majid
    Eftekhar, Ali A.
    Adibi, Ali
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [29] Visible Harmonic Generation in CMOS-Compatible Integrated Photonic Devices
    Levy, Jacob S.
    Foster, Mark A.
    Gaeta, Alexander L.
    Lipson, Michal
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [30] CMOS-compatible integrated optical hyper-parametric oscillator
    Razzari L.
    Duchesne D.
    Ferrera M.
    Morandotti R.
    Chu S.
    Little B.E.
    Moss D.J.
    Nature Photonics, 2010, 4 (1) : 41 - 45