Long term modulation of the HPA axis by the hippocampus - Behavioral, biochemical and immunological endpoints in rats exposed to chronic mild stress

被引:38
作者
Bratt, AM
Kelley, SP
Knowles, JP
Barrett, J
Davis, K
Davis, M
Mittleman, G
机构
[1] Univ Memphis, Dept Psychol, Memphis, TN 38152 USA
[2] Cat & Cow Vet Clin, Olive Branch, MS 38654 USA
[3] Univ Memphis, Dept Biol, Memphis, TN 38152 USA
关键词
hippocampus; fimbria-fornix; subiculum; amphetamine; metryapone; corticosterone; locomotion;
D O I
10.1016/S0306-4530(00)00033-0
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Mature rats were given lesions of the hippocampus (HIPPO), subiculum (SUBIC) or fimbria-fornix (FIFO) and then received the mild chronic stressors of food deprivation and isolation housing for ten months prior to testing. Group differences in circadian activity were investigated along with locomotion elicited by amphetamine (AMP 1.0-2.0 mg/kg i.p.) alone, and following the corticosterone (CORT) synthesis inhibitor, metyrapone (MET 10.0-25.0 mg/kg i.p.), Basal levels of plasma CORT, (ng/ml), plasma glucose (GLUC, mmol/l), thymic and splenic wet weights were subsequently determined along with complete blood counts (CBC). In comparison to age matched, unoperated controls, selective SUBIC lesions altered the circadian periodicity of locomotion, while rats with FIFO lesions were spontaneously hyperactive. Both HIPPO and FIFO animals showed significantly higher levels of amphetamine-induced locomotion. In all groups metyrapone significantly enhanced locomotion elicited by amphetamine, probably due to a pharmacokinetic interaction between these drugs. In comparison to controls, animals in the HIPPO group showed significant reductions in plasma glucose levels, decreased thymic wet weights and reductions in lymphocyte numbers, indicating lesion-related immune-suppression. These findings highlight a functional difference among the effects of these specific hippocampal lesions on neural regulation of the HPA axis, under conditions of chronic mild stress, suggesting that the modulatory influence of the hippocampus on the stress axis is dependent on the neuroanatomical location and total extent of cell loss within this structure. They further suggest that the heightened response to amphetamine occurs independently of any lesion-induced changes in modulation of the HPA axis. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:121 / 145
页数:25
相关论文
共 77 条
[61]  
SAPOLSKY RM, 1991, NEUROBIOL AGING, V13, P171
[62]   THE ORGANIZATION OF FOREBRAIN AFFERENTS TO THE PARAVENTRICULAR AND SUPRAOPTIC NUCLEI OF THE RAT [J].
SAWCHENKO, PE ;
SWANSON, LW .
JOURNAL OF COMPARATIVE NEUROLOGY, 1983, 218 (02) :121-144
[63]  
STILLS TL, 1999, PSYCHOPHARMACOLOGY, V141, P421
[64]   HIPPOCAMPUS, AMYGDALA, AND MEMORY DEFICITS IN RATS [J].
SUTHERLAND, RJ ;
MCDONALD, RJ .
BEHAVIOURAL BRAIN RESEARCH, 1990, 37 (01) :57-79
[65]   AUTORADIOGRAPHIC STUDY OF ORGANIZATION OF EFFERENT CONNECTIONS OF HIPPOCAMPAL FORMATION IN RAT [J].
SWANSON, LW ;
COWAN, WM .
JOURNAL OF COMPARATIVE NEUROLOGY, 1977, 172 (01) :49-84
[66]   PITUITARY-ADRENAL AXIS RESPONSES TO ACUTE AMPHETAMINE IN THE RAT [J].
SWERDLOW, NR ;
KOOB, GF ;
CADOR, M ;
LORANG, M ;
HAUGER, RL .
PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR, 1993, 45 (03) :629-637
[67]  
Tomkins DM, 1997, BEHAV PHARMACOL, V8, P223
[68]   DISTRIBUTION OF THE MINERALOCORTICOID AND THE GLUCOCORTICOID RECEPTOR MESSENGER-RNAS IN THE RAT HIPPOCAMPUS [J].
VANEEKELEN, JAM ;
JIANG, W ;
DEKLOET, ER ;
BOHN, MC .
JOURNAL OF NEUROSCIENCE RESEARCH, 1988, 21 (01) :88-94
[69]   LIMBIC CONTROL OF ENDOCRINE GLANDS IN AGED RATS [J].
VERKHRATSKY, NS .
EXPERIMENTAL GERONTOLOGY, 1995, 30 (3-4) :415-421
[70]   BIOCHEMICAL-EVIDENCE FOR GLUTAMATE AS A TRANSMITTER IN HIPPOCAMPAL EFFERENTS TO THE BASAL FOREBRAIN AND HYPOTHALAMUS IN THE RAT-BRAIN [J].
WALAAS, I ;
FONNUM, F .
NEUROSCIENCE, 1980, 5 (10) :1691-1698