Online Measurement Error Detection for the ElectronicTransformer in a Smart Grid

被引:10
|
作者
Xiong, Gu [1 ]
Przystupa, Krzysztof [2 ]
Teng, Yao [1 ]
Xue, Wang [1 ]
Huan, Wang [1 ]
Feng, Zhou [3 ]
Qiong, Xiang [1 ]
Wang, Chunzhi [4 ]
Skowron, Mikolaj [5 ]
Kochan, Orest [4 ,6 ]
Beshley, Mykola [6 ]
机构
[1] China Elect Power Res Inst, Wuhan 430000, Peoples R China
[2] Lublin Univ Technol, Dept Automat, Nadbystrzycka 36, PL-20618 Lublin, Poland
[3] State Grid Chongqing Elect Power Co Mkt Serv Ctr, Chongqing 400015, Peoples R China
[4] Hubei Univ Technol, Sch Comp Sci, Wuhan 430000, Peoples R China
[5] AGH Univ Sci & Technol, Dept Elect & Power Engn, A Mickiewicza 30, PL-30059 Krakow, Poland
[6] Lviv Polytech Natl Univ, Dept Telecommun, Bandery 12, UA-79013 Lvov, Ukraine
基金
中国国家自然科学基金;
关键词
smart grid; transformer error prediction; attention mechanism; long short-term memory network; Seq2Seq network; SYSTEM; TRANSFORMERS; CALIBRATION; NETWORKS; INTERNET;
D O I
10.3390/en14123551
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the development of smart power grids, electronic transformers have been widely used to monitor the online status of power grids. However, electronic transformers have the drawback of poor long-term stability, leading to a requirement for frequent measurement. Aiming to monitor the online status frequently and conveniently, we proposed an attention mechanism-optimized Seq2Seq network to predict the error state of transformers, which combines an attention mechanism, Seq2Seq network, and bidirectional long short-term memory networks to mine the sequential information from online monitoring data of electronic transformers. We implemented the proposed method on the monitoring data of electronic transformers in a certain electric field. Experiments showed that our proposed attention mechanism-optimized Seq2Seq network has high accuracy in the aspect of error prediction.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] APED: An Efficient Aggregation Protocol with Error Detection for Smart Grid Communications
    Sun, Ruixue
    Shi, Zhiguo
    Lu, Rongxing
    Lu, Min
    Shen, Xuemin
    2013 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2013, : 432 - 437
  • [2] Online Smart Grid Laboratory
    Nedic, Zorica
    Nafalski, Andrew
    PROCEEDINGS OF 2015 3RD EXPERIMENT AT INTERNATIONAL CONFERENCE (EXP AT'15), 2015, : 272 - 275
  • [3] Smart Grid - The New and Improved Power Grid: A Survey
    Fang, Xi
    Misra, Satyajayant
    Xue, Guoliang
    Yang, Dejun
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2012, 14 (04): : 944 - 980
  • [4] Detection to false data for smart grid
    Zheng, Jian
    Ren, Shumiao
    Zhang, Jingyue
    Kui, Yu
    Li, Jingyi
    Jiang, Qin
    Wang, Shiyan
    CYBERSECURITY, 2025, 8 (01):
  • [5] Online Cyber-Attack Detection in Smart Grid: A Reinforcement Learning Approach
    Kurt, Mehmet Necip
    Ogundijo, Oyetunji
    Li, Chong
    Wang, Xiaodong
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (05) : 5174 - 5185
  • [6] Securing the Smart Grid: A Comprehensive Compilation of Intrusion Detection and Prevention Systems
    Radoglou-Grammatikis, Panagiotis, I
    Sarigiannidis, Panagiotis G.
    IEEE ACCESS, 2019, 7 : 46595 - 46620
  • [7] Embedding Synchronized Measurement Technology for Smart Grid Development
    Moreno-Munoz, Antonio
    Pallares-Lopez, Victor
    Jose Gonzalez de la Rosa, Juan
    Real-Calvo, Rafael
    Gonzalez-Redondo, Miguel
    Moreno-Garcia, I. M.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2013, 9 (01) : 52 - 61
  • [8] Diverse Grouping-Based Aggregation Protocol With Error Detection for Smart Grid Communications
    Shi, Zhiguo
    Sun, Ruixue
    Lu, Rongxing
    Chen, Le
    Chen, Jiming
    Shen, Xuemin
    IEEE TRANSACTIONS ON SMART GRID, 2015, 6 (06) : 2856 - 2868
  • [9] Smart Measurement Techniques for Efficient Operation of Smart Grid
    Shinde, Sonali B.
    Katti, P. K.
    2015 INTERNATIONAL CONFERENCED ON CIRCUITS, POWER AND COMPUTING TECHNOLOGIES (ICCPCT-2015), 2015,
  • [10] Online electricity theft detection framework for large-scale smart grid data
    Tehrani, Soroush Omidvar
    Shahrestani, Afshin
    Yaghmaee, Mohammad Hossein
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 208