An ergodic theorem for stochastic programming problems

被引:0
作者
Korf, LA [1 ]
Wets, RJB
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
来源
OPTIMIZATION | 2000年 / 48卷
关键词
ergodic theorem; laws of large numbers; stochastic programming; stochastic programs with recourse; stochastic programs with chance constraints; random lsc functions; epi-convergence;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
To justify the use of sampling to solve stochastic programming problems one usually relies on a law of large numbers for random Isc (lower semicontinuous) functions when the samples come from independent, identical experiments. If the samples come from a stationary process, one can appeal to the ergodic theorem proved here. The proof relies on the 'scalarization' of random lsc functions.
引用
收藏
页码:203 / 217
页数:15
相关论文
共 19 条
  • [1] [Anonymous], HDB OPERATIONS RES M
  • [2] Artstein Z., 1995, J CONVEX ANAL, V2, P1
  • [3] ATTOUCH H, 1990, SEM AN CONV MONTP
  • [4] Attouch H., 1984, APPL MATH SERIES
  • [5] Aubin J. P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
  • [6] Birge J. R., 1997, INTRO STOCHASTIC PRO
  • [7] CASTAING C, 1995, SLLN CONVEX RANDOM S
  • [8] Durrett R., 1991, PROBABILITY THEORY E
  • [9] HESS C, 1991, CAHIERS
  • [10] Kall P, 1994, STOCHASTIC PROGRAMMI