A statistical detection of an anomaly/target from noisy tomographic projections

被引:0
|
作者
Fillatre, L [1 ]
Nikiforov, I [1 ]
机构
[1] Univ Technol Troyes, Lab Modelisat & Surete Syst, F-10010 Troyes, France
来源
ISPA 2003: PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, PTS 1 AND 2 | 2003年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of detecting an anomaly/target from a limited number of noisy tomographic projections is addressed from the statistical point of view. We study an unknown two-dimensional scene composed of an environment, considered as a nuisance parameter set, with a possibly hidden anomaly/target. An optimal statistical invariant test is proposed to solve such a problem.
引用
收藏
页码:399 / 404
页数:6
相关论文
共 50 条
  • [31] Matched filter reconstruction from tomographic projections
    Kappeler, C
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING IV, PTS 1 AND 2, 1996, 2825 : 774 - 784
  • [32] Truncation artifacts in tomographic reconstructions from projections
    Muller, M
    Arce, GR
    APPLIED OPTICS, 1996, 35 (20): : 3902 - 3914
  • [34] New statistical approaches for anomaly detection
    Callegari, Christian
    Giordano, Stefano
    Pagano, Michele
    SECURITY AND COMMUNICATION NETWORKS, 2009, 2 (06) : 611 - 634
  • [35] The Banff Challenge: Statistical Detection of a Noisy Signal
    Davison, A. C.
    Sartori, N.
    STATISTICAL SCIENCE, 2008, 23 (03) : 354 - 364
  • [36] A Statistical Edge Detection Framework for Noisy Images
    Duman, Elvan
    Erdem, O. Ayhan
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [37] Semi-supervised Learning from Active Noisy Soft Labels for Anomaly Detection
    Martens, Timo
    Perini, Lorenzo
    Davis, Jesse
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I, 2023, 14169 : 219 - 236
  • [38] Potential Target Region Extraction and Isolated Forest With Statistical Correlation Representation for Hyperspectral Anomaly Detection
    Li, Zhuang
    Zhang, Ye
    Zhang, Junping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [39] Random sampling statistical analysis for adaptive target-scale-invariant hyperspectral anomaly detection
    Romano, Joao M.
    Rosario, Dalton
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIII, 2007, 6565
  • [40] Target detection threshold in noisy color imagery
    Driggers, RG
    Krapels, K
    Vollmerhausen, R
    Warren, P
    Scribner, D
    Howard, G
    Tsou, BH
    Krebs, WK
    INFRARED IMAGING SYSTEMS: DESIGN, ANALYSIS, MODELING, AND TESTING XII, 2001, 4372 : 162 - 169