An overlapping additive Schwarz preconditioner for interpolation on the unit sphere with spherical radial basis functions

被引:3
作者
Le Gia, Q. T. [1 ]
Tran, T. [1 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Interpolation; Unit sphere; Radial basis function; Additive Schwarz preconditioner; SCATTERED DATA INTERPOLATION; POSITIVE-DEFINITE FUNCTIONS; DOMAIN DECOMPOSITION;
D O I
10.1016/j.jco.2010.06.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The problem of interpolation of scattered data on the unit sphere has many applications in geodesy and Earth science in which the sphere is taken as a model for the Earth. Spherical radial basis functions provide a convenient tool for constructing the interpolant. However, the underlying linear systems tend to be ill-conditioned. In this paper, we present an additive Schwarz preconditioner for accelerating the solution process. An estimate for the condition number of the preconditioned system will be discussed. Numerical experiments using MAGSAT satellite data will be presented. Crown Copyright (C) 2010 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:552 / 573
页数:22
相关论文
共 50 条
  • [41] Positive Approximation and Interpolation Using Compactly Supported Radial Basis Functions
    Wu, Jinming
    Zhang, Xiaolei
    Peng, Lihui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [42] Numerical experiments on the condition number of the interpolation matrices for radial basis functions
    Boyd, John P.
    Gildersleeve, Kenneth W.
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (04) : 443 - 459
  • [43] Sobolev-type Lp-approximation orders of radial basis function interpolation to functions in fractional Sobolev spaces
    Lee, Mun Bae
    Lee, Yeon Ju
    Yoon, Jungho
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (01) : 279 - 293
  • [44] Solving non-strongly elliptic pseudodifferential equations on a sphere using radial basis functions
    Pham, D. T.
    Tran, T.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (08) : 1970 - 1983
  • [45] Turbulence-preserving interpolation of aero-optical wavefront data using radial basis functions: application and fractal analysis
    Riley, Joseph
    Goorskey, David
    OPTICAL ENGINEERING, 2020, 59 (09)
  • [46] Hybrid Gaussian-cubic radial basis functions for scattered data interpolation
    Pankaj K. Mishra
    Sankar K. Nath
    Mrinal K. Sen
    Gregory E. Fasshauer
    Computational Geosciences, 2018, 22 : 1203 - 1218
  • [47] Hybrid Gaussian-cubic radial basis functions for scattered data interpolation
    Mishra, Pankaj K.
    Nath, Sankar K.
    Sen, Mrinal K.
    Fasshauer, Gregory E.
    COMPUTATIONAL GEOSCIENCES, 2018, 22 (05) : 1203 - 1218
  • [48] Multiply monotone functions for radial basis function interpolation: Extensions and new kernels
    Buhmann, Martin
    Jaeger, Janin
    JOURNAL OF APPROXIMATION THEORY, 2020, 256
  • [49] Scattered data interpolation: Strictly positive definite radial basis/cardinal functions
    Kazem, Saeed
    Hatam, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 394
  • [50] Different radial basis functions and their applicability for regional gravity field representation on the sphere
    Bentel K.
    Schmidt M.
    Gerlach C.
    GEM - International Journal on Geomathematics, 2013, 4 (1) : 67 - 96