An overlapping additive Schwarz preconditioner for interpolation on the unit sphere with spherical radial basis functions

被引:3
作者
Le Gia, Q. T. [1 ]
Tran, T. [1 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Interpolation; Unit sphere; Radial basis function; Additive Schwarz preconditioner; SCATTERED DATA INTERPOLATION; POSITIVE-DEFINITE FUNCTIONS; DOMAIN DECOMPOSITION;
D O I
10.1016/j.jco.2010.06.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The problem of interpolation of scattered data on the unit sphere has many applications in geodesy and Earth science in which the sphere is taken as a model for the Earth. Spherical radial basis functions provide a convenient tool for constructing the interpolant. However, the underlying linear systems tend to be ill-conditioned. In this paper, we present an additive Schwarz preconditioner for accelerating the solution process. An estimate for the condition number of the preconditioned system will be discussed. Numerical experiments using MAGSAT satellite data will be presented. Crown Copyright (C) 2010 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:552 / 573
页数:22
相关论文
共 26 条
[1]   Fitting scattered data on sphere-like surfaces using spherical splines [J].
Alfeld, P ;
Neamtu, M ;
Schumaker, LL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 73 (1-2) :5-43
[2]  
[Anonymous], 1942, Duke Math. J., DOI 10.1215/S0012-7094-42-00908-6
[3]  
Beatson RK, 2000, SIAM J SCI COMPUT, V22, P1717
[4]  
Bollobas B., 1998, Modern graph theory
[5]   A necessary and sufficient condition for strictly positive definite functions on spheres [J].
Chen, DB ;
Menegatto, VA ;
Xun, XP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (09) :2733-2740
[6]  
Fasshauer GE, 1998, INNOV APPL MATH, P117
[7]  
HON YC, 2000, INT J APPL MATH, V4, P81
[8]   OVERLAPPING ADDITIVE SCHWARZ PRECONDITIONERS FOR ELLIPTIC PDES ON THE UNIT SPHERE [J].
Le Gia, Q. T. ;
Sloan, I. H. ;
Tran, T. .
MATHEMATICS OF COMPUTATION, 2009, 78 (265) :79-101
[9]  
Lebedev NN., 1965, Special functions and their applications, DOI [10.1063/1.3047047, DOI 10.1063/1.3047047]
[10]   Norm estimates of interpolation matrices and their inverses associated with strictly positive definite functions [J].
Levesley, J ;
Luo, Z ;
Sun, X .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (07) :2127-2134