Multi-sensor image super-resolution with fuzzy cluster by using multi-scale and multi-view sparse coding for infrared image

被引:12
|
作者
Yang, Xiaomin [1 ]
Wu, Wei [1 ]
Liu, Kai [2 ]
Chen, Weilong [3 ]
Zhang, Ping [4 ]
Zhou, Zhili [5 ,6 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610064, Sichuan, Peoples R China
[2] Sichuan Univ, Sch Elect Engn & Informat, Chengdu 610064, Sichuan, Peoples R China
[3] Sichuan Normal Univ, Coll Movie & Media, Chengdu 610018, Sichuan, Peoples R China
[4] Univ Elect Sci & Technol China, Graph Image & Signal Proc Applicat Lab, Chengdu 611731, Sichuan, Peoples R China
[5] Nanjing Univ Informat Sci & Technol, Jiangsu Engn Ctr Network Monitoring, Nanjing 210044, Jiangsu, Peoples R China
[6] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-sensor; Super-resolution; Sparse coding; Infrared image; Dictionary learning; Multiview representation; Fuzzy clustering theory; INTERPOLATION; SEGMENTATION; DICTIONARY; ALGORITHM; MOTION;
D O I
10.1007/s11042-017-4639-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Super-resolution (SR) methods are effective for generating a high-resolution image from a single low-resolution image. However, four problems are observed in existing SR methods. (1) They cannot reconstruct many details from a low-resolution infrared image because infrared images always lack detailed information. (2) They cannot extract the desired information from images because they do not consider that images naturally come at different scales in many cases. (3) They fail to reveal different physical structures of low-resolution patch because they extract features from a single view. (4) They fail to extract all the different patterns because they use only one dictionary to represent all patterns. To overcome these problems, we propose a novel SR method for infrared images. First, we combine the information of high-resolution visible light images and low-resolution infrared images to improve the resolution of infrared images. Second, we use multiscale patches instead of fixed-size patches to represent infrared images more accurately. Third, we use different feature vectors rather than a single feature to represent infrared images. Finally, we divide training patches into several clusters, and multiple dictionaries are learned for each cluster to provide each patch with a more accurate dictionary. In the proposed method, clustering information for low-resolution patches is learnt by using fuzzy clustering theory. Experiments validate that the proposed method yields better results in terms of quantization and visual perception than the state-of-the-art algorithms.
引用
收藏
页码:24871 / 24902
页数:32
相关论文
共 50 条
  • [21] Multi-scale feature aggregation network for Image super-resolution
    Chen, Wenlong
    Yao, Pengcheng
    Gai, Shaoyan
    Da, Feipeng
    APPLIED INTELLIGENCE, 2022, 52 (04) : 3577 - 3586
  • [22] Multi-scale feature aggregation network for Image super-resolution
    Wenlong Chen
    Pengcheng Yao
    Shaoyan Gai
    Feipeng Da
    Applied Intelligence, 2022, 52 : 3577 - 3586
  • [23] TBNet: Stereo Image Super-Resolution with Multi-Scale Attention
    Zhu, Jiyang
    Han, Xue
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 32 (18)
  • [24] Image super-resolution via multi-view information fusion networks
    Jiang, Xinrui
    Wang, Nannan
    Xin, Jingwei
    Yang, Xi
    Yu, Yi
    Gao, Xinbo
    NEUROCOMPUTING, 2020, 402 : 29 - 37
  • [25] Image Super-Resolution Using Multi-Scale Space Feature and Deformable Convolutional Network
    Jiang, Guosong
    Lu, Zhengwu
    Tu, Xuping
    Guan, Yurong
    Wang, Qingdong
    IEEE ACCESS, 2021, 9 : 74614 - 74621
  • [26] MMSRNet: Pathological image super-resolution by multi-task and multi-scale learning
    Wu, Xinyue
    Chen, Zhineng
    Peng, Changgen
    Ye, Xiongjun
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 81
  • [27] Image super-resolution using supervised multi-scale feature extraction network
    Yemei Sun
    Yan Zhang
    Shudong Liu
    Weijia Lu
    Xianguo Li
    Multimedia Tools and Applications, 2021, 80 : 1995 - 2008
  • [28] Single Image Super-Resolution Using Multi-scale Convolutional Neural Network
    Jia, Xiaoyi
    Xu, Xiangmin
    Cai, Bolun
    Guo, Kailing
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT I, 2018, 10735 : 149 - 157
  • [29] Image super-resolution using supervised multi-scale feature extraction network
    Sun, Yemei
    Zhang, Yan
    Liu, Shudong
    Lu, Weijia
    Li, Xianguo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (02) : 1995 - 2008
  • [30] Multi-scale large receptive field feature distillation network for lightweight infrared image super-resolution
    Bai, Yuchen
    Zhu, Lianqing
    Sun, Yichen
    Dong, Mingli
    Yu, Mingxing
    OPTICS AND LASER TECHNOLOGY, 2025, 188