CODING OF PLENOPTIC IMAGES BY USING A SPARSE SET AND DISPARITIES

被引:0
|
作者
Li, Yun [1 ]
Sjobstrom, Marten [1 ]
Olsson, Roger [1 ]
机构
[1] Mid Sweden Univ, Dept Informat & Commun Syst, Sundsvall, Sweden
来源
2015 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME) | 2015年
关键词
Plenoptic; lightfield; HEVC; compression; COMPRESSION;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A focused plenoptic camera not only captures the spatial information of a scene but also the angular information. The capturing results in a plenoptic image consisting of multiple microlens images and with a large resolution. In addition, the microlens images are similar to their neighbors. Therefore, an efficient compression method that utilizes this pattern of similarity can reduce coding bit rate and further facilitate the usage of the images. In this paper, we propose an approach for coding of focused plenoptic images by using a representation, which consists of a sparse plenoptic image set and disparities. Based on this representation, a reconstruction method by using interpolation and inpainting is devised to reconstruct the original plenoptic image. As a consequence, instead of coding the original image directly, we encode the sparse image set plus the disparity maps and use the reconstructed image as a prediction reference to encode the original image. The results show that the proposed scheme performs better than HEVC intra with more than 5 dB PSNR or over 60 percent bit rate reduction.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A Hybrid Tucker-VQ Tensor Sketch decomposition model for coding and streaming real world light fields using stack of differently focused images
    Ravishankar, Joshitha
    Sharma, Mansi
    Khaidem, Sally
    PATTERN RECOGNITION LETTERS, 2022, 159 : 23 - 30
  • [22] Frequency Estimation of the Plenoptic Function Using the Autocorrelation Theorem
    Zhu, Changjian
    Yu, Li
    Yan, Zengqiang
    Xiang, Sen
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2017, 3 (04): : 966 - 981
  • [23] Fast Fractal Coding of MRI Images using Deep Reinforcement Learning
    Varghese, Bejoy
    Krishnakumar, S.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (04) : 752 - 759
  • [24] CONTRIBUTIONS TO LOSSLESS CODING OF MEDICAL IMAGES USING MINIMUM RATE PREDICTORS
    Santos, Joao M.
    Guarda, Andre F. R.
    Rodrigues, Nuno M. M.
    Faria, Sergio M. M.
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 2935 - 2939
  • [25] LOSSY IMAGE CODING IN THE PIXEL DOMAIN USING A SPARSE STEERING KERNEL SYNTHESIS APPROACH
    Verhack, Ruben
    Krutz, Andreas
    Lambert, Peter
    Van de Walle, Rik
    Sikora, Thomas
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 4807 - 4811
  • [26] Learning Blind Quality Evaluator for Stereoscopic Images Using Joint Sparse Representation
    Shao, Feng
    Li, Kemeng
    Lin, Weisi
    Jiang, Gangyi
    Dai, Qionghai
    IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (10) : 2104 - 2114
  • [27] Scalable Coding of Encrypted Images
    Zhang, Xinpeng
    Feng, Guorui
    Ren, Yanli
    Qian, Zhenxing
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (06) : 3108 - 3114
  • [28] Compression of sparse matrices by blocked rice coding
    McKenzie, BJ
    Bell, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (03) : 1223 - 1230
  • [29] Iterative Sparse Coding for Colorization Based Compression
    Lee, Suk-Ho
    Oh, Paul
    Kang, Moon Gi
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2014, PT I, 2014, 8814 : 112 - 120
  • [30] A method to improve HEVC lossless coding of volumetric medical images
    Guarda, Andre F. R.
    Santos, Joao M.
    Cruz, Luis A. da Silva
    Assuncao, Pedro A. A.
    Rodrigues, Nuno M. M.
    de Faria, Sergio M. M.
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2017, 59 : 96 - 104