Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods

被引:12
|
作者
Ehrlich, Elena [1 ]
Jasra, Ajay [2 ]
Kantas, Nikolas [1 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
[3] UCL, Dept Stat Sci, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Approximate Bayesian computation; Hidden Markov models; Parameter estimation; Sequential Monte Carlo; GEOMETRIC ERGODICITY;
D O I
10.1007/s11009-013-9357-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we focus on Maximum Likelihood estimation (MLE) for the static model parameters of hidden Markov models (HMMs). We will consider the case where one cannot or does not want to compute the conditional likelihood density of the observation given the hidden state because of increased computational complexity or analytical intractability. Instead we will assume that one may obtain samples from this conditional likelihood and hence use approximate Bayesian computation (ABC) approximations of the original HMM. Although these ABC approximations will induce a bias, this can be controlled to arbitrary precision via a positive parameter I mu, so that the bias decreases with decreasing I mu. We first establish that when using an ABC approximation of the HMM for a fixed batch of data, then the bias of the resulting log- marginal likelihood and its gradient is no worse than , where n is the total number of data-points. Therefore, when using gradient methods to perform MLE for the ABC approximation of the HMM, one may expect parameter estimates of reasonable accuracy. To compute an estimate of the unknown and fixed model parameters, we propose a gradient approach based on simultaneous perturbation stochastic approximation (SPSA) and Sequential Monte Carlo (SMC) for the ABC approximation of the HMM. The performance of this method is illustrated using two numerical examples.
引用
收藏
页码:315 / 349
页数:35
相关论文
共 50 条
  • [21] Parameter Estimation for Continuous Time Hidden Markov Processes
    Yu. A. Kutoyants
    Automation and Remote Control, 2020, 81 : 445 - 468
  • [22] Bayesian Experimental Design for Models with Intractable Likelihoods
    Drovandi, Christopher C.
    Pettitt, Anthony N.
    BIOMETRICS, 2013, 69 (04) : 937 - 948
  • [23] Semiparametric hidden Markov models: identifiability and estimation
    Dannemann, Joern
    Holzmann, Hajo
    Leister, Anna
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2014, 6 (06): : 418 - 425
  • [24] Prepaid parameter estimation without likelihoods
    Mestdagh, Merijn
    Verdonck, Stijn
    Meers, Kristof
    Loossens, Tim
    Tuerlinckx, Francis
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (09)
  • [25] Minimax Adaptive Estimation of Nonparametric Hidden Markov Models
    De Castro, Yohann
    Gassiat, Elisabeth
    Lacour, Claire
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [26] Context Tree Estimation in Variable Length Hidden Markov Models
    Dumont, Thierry
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (06) : 3196 - 3208
  • [27] Bayesian Monte Carlo estimation for profile hidden Markov models
    Lewis, Steven J.
    Raval, Alpan
    Angus, John E.
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (11-12) : 1198 - 1216
  • [28] An MCMC sampling approach to estimation of nonstationary hidden Markov models
    Djuric, PM
    Chun, JH
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (05) : 1113 - 1123
  • [29] State Estimation for Flag Hidden Markov Models with Imperfect Sensors
    Doty, Kyle
    Roy, Sandip
    Fischer, Thomas R.
    2016 ANNUAL CONFERENCE ON INFORMATION SCIENCE AND SYSTEMS (CISS), 2016,
  • [30] AN ASYMPTOTIC ANALYSIS OF BAYESIAN STATE ESTIMATION IN HIDDEN MARKOV MODELS
    Yamazaki, Keisuke
    2011 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2011,