Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods

被引:12
|
作者
Ehrlich, Elena [1 ]
Jasra, Ajay [2 ]
Kantas, Nikolas [1 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
[3] UCL, Dept Stat Sci, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Approximate Bayesian computation; Hidden Markov models; Parameter estimation; Sequential Monte Carlo; GEOMETRIC ERGODICITY;
D O I
10.1007/s11009-013-9357-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we focus on Maximum Likelihood estimation (MLE) for the static model parameters of hidden Markov models (HMMs). We will consider the case where one cannot or does not want to compute the conditional likelihood density of the observation given the hidden state because of increased computational complexity or analytical intractability. Instead we will assume that one may obtain samples from this conditional likelihood and hence use approximate Bayesian computation (ABC) approximations of the original HMM. Although these ABC approximations will induce a bias, this can be controlled to arbitrary precision via a positive parameter I mu, so that the bias decreases with decreasing I mu. We first establish that when using an ABC approximation of the HMM for a fixed batch of data, then the bias of the resulting log- marginal likelihood and its gradient is no worse than , where n is the total number of data-points. Therefore, when using gradient methods to perform MLE for the ABC approximation of the HMM, one may expect parameter estimates of reasonable accuracy. To compute an estimate of the unknown and fixed model parameters, we propose a gradient approach based on simultaneous perturbation stochastic approximation (SPSA) and Sequential Monte Carlo (SMC) for the ABC approximation of the HMM. The performance of this method is illustrated using two numerical examples.
引用
收藏
页码:315 / 349
页数:35
相关论文
共 50 条
  • [1] Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Elena Ehrlich
    Ajay Jasra
    Nikolas Kantas
    Methodology and Computing in Applied Probability, 2015, 17 : 315 - 349
  • [2] Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Dean, Thomas A.
    Singh, Sumeetpal S.
    Jasra, Ajay
    Peters, Gareth W.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (04) : 970 - 987
  • [3] Parameter Estimation in Hidden Markov Models With Intractable Likelihoods Using Sequential Monte Carlo
    Yildirim, Sinan
    Singh, Sumeetpal S.
    Dean, Thomas
    Jasra, Ajay
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (03) : 846 - 865
  • [4] Parameter estimation in pair-hidden Markov models
    Arribas-Gil, Ana
    Gassiat, Elisabeth
    Matias, Catherine
    SCANDINAVIAN JOURNAL OF STATISTICS, 2006, 33 (04) : 651 - 671
  • [5] Computational issues in parameter estimation for stationary hidden Markov models
    Jan Bulla
    Andreas Berzel
    Computational Statistics, 2008, 23 : 1 - 18
  • [6] Computational issues in parameter estimation for stationary hidden Markov models
    Bulla, Jan
    Berzel, Andreas
    COMPUTATIONAL STATISTICS, 2008, 23 (01) : 1 - 18
  • [7] Filtering and Estimation for a Class of Stochastic Volatility Models with Intractable Likelihoods
    Vankov, Emilian R.
    Guindani, Michele
    Ensor, Katherine B.
    BAYESIAN ANALYSIS, 2019, 14 (01): : 29 - 52
  • [8] Parameter estimation for hidden Markov chains
    Archer, GEB
    Titterington, DM
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 108 (1-2) : 365 - 390
  • [9] Almost sure parameter estimation and convergence rates for hidden Markov models
    Elliott, RJ
    Moore, JB
    SYSTEMS & CONTROL LETTERS, 1997, 32 (04) : 203 - 207
  • [10] Simulated annealing for maximum A Posteriori parameter estimation of hidden Markov models
    Andrieu, C
    Doucet, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) : 994 - 1004