Symmetry Results in Two-Dimensional Inequalities for Aharonov-Bohm Magnetic Fields

被引:7
|
作者
Bonheure, Denis [1 ]
Dolbeault, Jean [2 ]
Esteban, Maria J. [2 ]
Laptev, Ari [3 ]
Loss, Michael [4 ]
机构
[1] Univ Libre Bruxelles, Fac Sci, Dept Math, Campus Plaine CP 213,Bld Triomphe, Brussels 1050, Belgium
[2] PSL Univ, Univ Paris Dauphine, CEREMADE CNRS UMR 7534, Pl Lattre Tassigny, Paris 75775 16, France
[3] Imperial Coll London, Dept Math, Huxley Bldg,180 Queens Gate, London SW7 2AZ, England
[4] Georgia Inst Technol, Sch Math, Skiles Bldg, Atlanta, GA 30332 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
CAFFARELLI-KOHN-NIRENBERG; EXTREMAL-FUNCTIONS; SHARP CONSTANTS; EQUATIONS; BREAKING; SOBOLEV;
D O I
10.1007/s00220-019-03560-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is devoted to the symmetry and symmetry breaking properties of a two-dimensional magnetic Schrodinger operator involving an Aharonov-Bohm magnetic vector potential. We investigate the symmetry properties of the optimal potential for the corresponding magnetic Keller-Lieb-Thirring inequality. We prove that this potential is radially symmetric if the intensity of the magnetic field is below an explicit threshold, while symmetry is broken above a second threshold corresponding to a higher magnetic field. The method relies on the study of the magnetic kinetic energy of the wave function and amounts to study the symmetry properties of the optimal functions in a magnetic Hardy-Sobolev interpolation inequality. We give a quantified range of symmetry by a non-perturbative method. To establish the symmetry breaking range, we exploit the coupling of the phase and of the modulus and also obtain a quantitative result.
引用
收藏
页码:2071 / 2087
页数:17
相关论文
共 50 条
  • [1] Symmetry Results in Two-Dimensional Inequalities for Aharonov–Bohm Magnetic Fields
    Denis Bonheure
    Jean Dolbeault
    Maria J. Esteban
    Ari Laptev
    Michael Loss
    Communications in Mathematical Physics, 2020, 375 : 2071 - 2087
  • [2] Electronic density of states for two-dimensional system in uniform magnetic and Aharonov-Bohm fields
    Slobodeniuk, A. O.
    Sharapov, S. G.
    Loktev, V. M.
    LOW TEMPERATURE PHYSICS, 2011, 37 (11) : 940 - 946
  • [3] TWO-DIMENSIONAL ELECTRONS IN MAGNETIC-FIELDS IN A MULTIPLY CONNECTED AHARONOV-BOHM GEOMETRY
    AOKI, H
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (09): : 1885 - 1890
  • [4] Aharonov-Bohm cages in two-dimensional structures
    Vidal, J
    Mosseri, R
    Douçot, B
    PHYSICAL REVIEW LETTERS, 1998, 81 (26) : 5888 - 5891
  • [5] A quantum pseudodot system with two-dimensional pseudoharmonic oscillator in external magnetic and Aharonov-Bohm fields
    Ikhdair, Sameer M.
    Hamzavi, Majid
    PHYSICA B-CONDENSED MATTER, 2012, 407 (21) : 4198 - 4207
  • [6] Effect of two-dimensional parity symmetry breaking in Aharonov-Bohm interference phenomena
    Xie, Yuantao
    Heremans, J. J.
    Santos, M. B.
    INTEGRATED FERROELECTRICS, 2016, 174 (01) : 8 - 14
  • [7] Aharonov-Bohm detection of two-dimensional magnetostatic cloaks
    Valagiannopoulos, Constantinos A.
    Askarpour, Amir Nader
    Alu, Andrea
    PHYSICAL REVIEW B, 2015, 92 (22):
  • [8] Density of states of relativistic and nonrelativistic two-dimensional electron gases in a uniform magnetic and Aharonov-Bohm fields
    Slobodeniuk, A. O.
    Sharapov, S. G.
    Loktev, V. M.
    PHYSICAL REVIEW B, 2011, 84 (12)
  • [9] Aharonov-Bohm effect of a magnetic fluxon moving ballistically in a two-dimensional ring
    Yamashita, O
    Tomiyoshi, S
    PHYSICS LETTERS A, 2003, 309 (1-2) : 138 - 145
  • [10] Strong unique continuation property of two-dimensional Dirac equations with Aharonov-Bohm fields
    Ikoma, M
    Yamada, O
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2003, 79 (09) : 158 - 161