Online Cooperative 3D Mapping for Autonomous Driving

被引:0
作者
Zhe XuanYuan [1 ]
Li, Boyang [2 ]
Zhang, Xinyi [1 ]
Long Chen [2 ]
Kai Huang [2 ]
机构
[1] Beijing Normal Univ, Hong Kong Baptist Univ, United Int Coll, Beijing, Peoples R China
[2] Sun Yat Sen Univ, Guangzhou, Peoples R China
来源
2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV) | 2018年
关键词
Autonomous Driving; 3D mapping; LIDAR; Cooperative Mapping; SIMULTANEOUS LOCALIZATION; EXPLORATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Autonomous driving requires 3D representations of the environments as high definition maps. In many cases, it is not efficient for a single vehicle to map the entire large environment. Therefore, a group of vehicles could cooperate to build maps. In this paper, we propose an approach for cooperative 3D mapping by multiple vehicles working simultaneously as a team. Each vehicle uses 3D LIDAR sensor and local mapping algorithms to build local map and the global map can be obtained by merging all the local maps in an consistent manner. The challenges in cooperative mapping lie in both accuracy and efficiency. We show that our cooperative mapping approach can save mapping time as well as reduce the accumulated error often suffered by single vehicle mapping algorithms. Meanwhile, real world experiments results indicate that our mapping algorithm can be implemented online with minimum burden imposed on communication channel and computation resources on each vehicle.
引用
收藏
页码:256 / 261
页数:6
相关论文
共 50 条
  • [41] Survey on deep learning-based 3D object detection in autonomous driving
    Liang, Zhenming
    Huang, Yingping
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (04) : 761 - 776
  • [42] 3D object detection for autonomous driving: Methods, models, sensors, data, and challenges
    Ghasemieh A.
    Kashef R.
    Transportation Engineering, 2022, 8
  • [43] Real-Time Semantic Segmentation of 3D Point Cloud for Autonomous Driving
    Kang, Dongwan
    Wong, Anthony
    Lee, Banghyon
    Kim, Jungha
    ELECTRONICS, 2021, 10 (16)
  • [44] MonoGhost: Lightweight Monocular GhostNet 3D Object Properties Estimation for Autonomous Driving
    El-Dawy, Ahmed
    El-Zawawi, Amr
    El-Habrouk, Mohamed
    ROBOTICS, 2023, 12 (06)
  • [45] Joint Solution for the Online 3D Photorealistic Mapping Using SfM and SLAM
    Choi, Hyunga
    Jun, ChangHyun
    Yuen, Shang Li
    Cho, HyunGi
    Doh, Nakju Lett
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2013, 10
  • [46] Mapping for Autonomous Driving: Opportunities and Challenges
    Wong, Kelvin
    Gu, Yanlei
    Kamijo, Shunsuke
    IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2021, 13 (01) : 91 - 106
  • [47] Enhanced Obstacle Detection in Autonomous Vehicles Using 3D LiDAR Mapping Techniques
    Tokgoz, Muhammed Enes
    Yusefi, Abdullah
    Toy, Ibrahim
    Durdu, Akif
    2024 23RD INTERNATIONAL SYMPOSIUM INFOTEH-JAHORINA, INFOTEH, 2024,
  • [48] Exploring Diversity-Based Active Learning for 3D Object Detection in Autonomous Driving
    Lin, Jinpeng
    Liang, Zhihao
    Deng, Shengheng
    Cai, Lile
    Jiang, Tao
    Li, Tianrui
    Jia, Kui
    Xu, Xun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 15454 - 15466
  • [49] An IMM-Enabled Adaptive 3D Multi-Object Tracker for Autonomous Driving
    Liu, Pengchao
    Duan, Zhansheng
    2021 IEEE 24TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2021, : 681 - 688
  • [50] The Research of 3D Point Cloud Data Clustering Based on MEMS Lidar for Autonomous Driving
    Yang, Weikang
    Dong, Siwei
    Li, Dagang
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2024, 25 (05) : 1251 - 1262