FFDNet-Based Channel Estimation for Massive MIMO Visible Light Communication Systems

被引:31
作者
Gao, Zhipeng [1 ]
Wang, Yuhao [1 ]
Liu, Xiaodong [2 ]
Zhou, Fuhui [3 ]
Wong, Kat-Kit [4 ]
机构
[1] Nanchang Univ, Sch Informat Engn, Nanchang 330031, Jiangxi, Peoples R China
[2] Wuhan Univ, Sch Elect Informat, Wuhan 437200, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 210000, Peoples R China
[4] UCL, Dept Elect & Elect Engn, London WC1E 7JE, England
基金
中国国家自然科学基金;
关键词
Channel estimation; m-MIMO; visible light communication; FFDNet; deep learning; PERFORMANCE;
D O I
10.1109/LWC.2019.2954511
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Channel estimation is of crucial importance in massive multiple-input multiple-output (m-MIMO) visible light communication (VLC) systems. In order to tackle this problem, a fast and flexible denoising convolutional neural network (FFDNet)-based channel estimation scheme for m-MIMO VLC systems was proposed. The channel matrix of the m-MIMO VLC channel is identified as a two-dimensional natural image since the channel has the characteristic of sparsity. A deep learning-enabled image denoising network FFDNet is exploited to learn from a large number of training data and to estimate the m-MIMO VLC channel. Simulation results demonstrate that our proposed channel estimation based on the FFDNet significantly outperforms the benchmark scheme based on minimum mean square error.
引用
收藏
页码:340 / 343
页数:4
相关论文
共 15 条
[1]   Adaptive Statistical Bayesian MMSE Channel Estimation for Visible Light Communication [J].
Chen, Xianyu ;
Jiang, Ming .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (05) :1287-1299
[2]   Performance Comparison of MIMO Techniques for Optical Wireless Communications in Indoor Environments [J].
Fath, Thilo ;
Haas, Harald .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2013, 61 (02) :733-742
[3]   Deep Learning for Spectrum Sensing [J].
Gao, Jiabao ;
Yi, Xuemei ;
Zhong, Caijun ;
Chen, Xiaoming ;
Zhang, Zhaoyang .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (06) :1727-1730
[4]   Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems [J].
He, Hengtao ;
Wen, Chao-Kai ;
Jin, Shi ;
Li, Geoffrey Ye .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (05) :852-855
[5]   Iterative Channel Estimation Using LSE and Sparse Message Passing for MmWave MIMO Systems [J].
Huang, Chongwen ;
Liu, Lei ;
Yuen, Chau ;
Sun, Sumei .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (01) :245-259
[6]   Deep Learning for Super-Resolution Channel Estimation and DOA Estimation Based Massive MIMO System [J].
Huang, Hongji ;
Yang, Jie ;
Huang, Hao ;
Song, Yiwei ;
Gui, Guan .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (09) :8549-8560
[7]   On the Performance of Visible Light Communication Systems With Non-Orthogonal Multiple Access [J].
Marshoud, Hanaa ;
Sofotasios, Paschalis C. ;
Muhaidat, Sami ;
Karagiannidis, George K. ;
Sharif, Bayan S. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (10) :6350-6364
[8]   A comparison of pilot-aided channel estimation methods for OFDM systems [J].
Morelli, M ;
Mengali, U .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (12) :3065-3073
[9]   Scaling Up MIMO [J].
Rusek, Fredrik ;
Persson, Daniel ;
Lau, Buon Kiong ;
Larsson, Erik G. ;
Marzetta, Thomas L. ;
Edfors, Ove ;
Tufvesson, Fredrik .
IEEE SIGNAL PROCESSING MAGAZINE, 2013, 30 (01) :40-60
[10]   Linear Transceiver Designs for MIMO Indoor Visible Light Communications Under Lighting Constraints [J].
Wang, Rui ;
Gao, Qian ;
You, Jiayi ;
Liu, Erwu ;
Wang, Ping ;
Xu, Zhengyuan ;
Hua, Yingbo .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2017, 65 (06) :2494-2508