An Efficient Anomaly Detection Framework for Electromagnetic Streaming Data

被引:1
|
作者
Sun, Degang [1 ,2 ]
Hu, Yulan [1 ,2 ]
Shi, Zhixin [1 ]
Xu, Guokun [1 ,2 ]
Zhou, Wei [3 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
[3] Unit 32256, Beijing, Peoples R China
关键词
Anomaly Detection; Machine Learning; Streaming Data; Isolation Forest;
D O I
10.1145/3335484.3335521
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The electromagnetic signal is a kind of communication signal whose intensity can reflect the electromagnetic condition of the current space. The continuous electromagnetic signal data can be seen as a kind of time-series flow data. During actual monitoring, the use of wireless devices can affect the electromagnetic space distribution and alter the signal strength at the corresponding frequency point. By detecting the changes of signal strength, the use of wireless devices can be effectively found. Based on the isolation forest algorithm and the Storm streaming computing platform, an efficient framework for wireless devices usage detection is proposed. The experiments results based on the real-world electromagnetic streaming data demonstrate that the framework can accurately and efficiently detect abnormal signals.
引用
收藏
页码:151 / 155
页数:5
相关论文
共 50 条
  • [41] DCF: An efficient data stream clustering framework for streaming applications
    Cho, Kyungmin
    Jo, Sungjae
    Jang, Hyukjae
    Kim, Su Myeon
    Song, Junehwa
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2006, 4080 : 114 - 122
  • [42] Data-Driven Anomaly Detection Approach for Time-Series Streaming Data
    Zhang, Minghu
    Guo, Jianwen
    Li, Xin
    Jin, Rui
    SENSORS, 2020, 20 (19) : 1 - 17
  • [43] Anomaly detection in streaming environmental sensor data: A data-driven modeling approach
    Hill, David J.
    Minsker, Barbara S.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2010, 25 (09) : 1014 - 1022
  • [44] Probabilistic framework of visual anomaly detection for unbalanced data
    Wang, Yongxiong
    Li, Xuan
    Ding, Xueming
    NEUROCOMPUTING, 2016, 201 : 12 - 18
  • [45] Contextual anomaly detection framework for big sensor data
    Hayes M.A.
    Capretz M.A.
    Journal of Big Data, 2 (1)
  • [46] Graph Learning Framework for Data Link Anomaly Detection
    Yang, Chang
    Wu, Lisha
    Xu, Jing
    Ren, Yingjie
    Tian, Bo
    Wei, Zhenhua
    IEEE ACCESS, 2024, 12 : 114820 - 114828
  • [47] An anomaly detection framework for cyber-security data
    Evangelou, Marina
    Adams, Niall M.
    COMPUTERS & SECURITY, 2020, 97
  • [48] A data analytics framework for anomaly detection in flight operations
    Coelho e Silva, Lucas
    Rocha Murca, Mayara Conde
    JOURNAL OF AIR TRANSPORT MANAGEMENT, 2023, 110
  • [49] PROBABILISTIC REASONING FOR STREAMING ANOMALY DETECTION
    Carter, Kevin M.
    Streilein, William W.
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 377 - 380
  • [50] An explainable and efficient deep learning framework for video anomaly detection
    Chongke Wu
    Sicong Shao
    Cihan Tunc
    Pratik Satam
    Salim Hariri
    Cluster Computing, 2022, 25 : 2715 - 2737