A simple proof of the discrete time geometric Pontryagin maximum principle on smooth manifolds

被引:5
作者
Assif, Mishal P. K. [1 ]
Chatterjee, Debasish [2 ]
Banavar, Ravi [2 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, 306 N Wright St, Urbana, IL 61801 USA
[2] Indian Inst Technol, Syst & Control Engn, Mumbai 400076, Maharashtra, India
关键词
Optimal control; Pontryagin maximum principle; Smooth manifolds;
D O I
10.1016/j.automatica.2019.108791
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We establish a geometric Pontryagin maximum principle for discrete time optimal control problems on finite dimensional smooth manifolds under the following three types of constraints: a) constraints on the states pointwise in time, b) constraints on the control actions pointwise in time, c) constraints on the frequency spectrum of the optimal control trajectories. Our proof follows, in spirit, the path to establish geometric versions of the Pontryagin maximum principle on smooth manifolds indicated in Chang (2011) in the context of continuous-time optimal control. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 15 条
[1]  
Agrachev A., 2004, CONTROL THEORY GEOME, V87, DOI DOI 10.1007/978-3-662-06404-7
[2]  
[Anonymous], 2009, Convex optimization theory
[3]  
[Anonymous], 1967, Foundations of optimal control theory
[4]  
Boltyanskii V.G., 1978, OPTIMAL CONTROL DISC
[5]  
Boltyanskii V. G., 1975, RUSS MATH SURV, V30, P3, DOI DOI 10.1070/RM1975V030N03ABEH001411
[6]  
Boltyanskii V. G., 1971, MATH METHODS OPTIMAL
[7]   A simple proof of the Pontryagin maximum principle on manifolds [J].
Chang, Dong Eui .
AUTOMATICA, 2011, 47 (03) :630-633
[8]   THE DISCRETE-TIME GEOMETRIC MAXIMUM PRINCIPLE [J].
Kipka, Robert ;
Gupta, Rohit .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (04) :2939-2961
[9]  
Lee J., 2012, Introduction to Smooth Manifolds
[10]   Discrete time pontryagin maximum principle under state-action-frequency constraints [J].
Paruchuri P. ;
Chatterjee D. .
IEEE Transactions on Automatic Control, 2019, 64 (10) :4202-4208