Fabrication of zinc oxide nanostructure coated membranes for efficient oil/water separation

被引:81
作者
Huang, Allen [1 ]
Chen, Liang-Hsun [1 ]
Kan, Chia-Chi [1 ]
Hsu, Tong-Yang [1 ]
Wu, Su-En [1 ]
Jana, Karun Kumar [1 ]
Tung, Kuo-Lun [1 ]
机构
[1] Natl Taiwan Univ, Dept Chem Engn, Taipei 106, Taiwan
关键词
Oil/water separation; Underwater oleophobicity; Zinc oxide nanostructures; Chemical bath deposition; CHEMICAL BATH DEPOSITION; NANOROD ARRAYS; ZNO NANORODS; SURFACE; GROWTH; OIL; MESH; SUPEROLEOPHOBICITY; DISTILLATION; MICROSPHERES;
D O I
10.1016/j.memsci.2018.09.007
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A hierarchically structured membrane was fabricated for oil/water separation by effectively depositing ZnO nanoparticles on a glass fiber (GF) membrane. Simple potassium permanganate solution treatment of the GF membranes resulted in the formation of an Mn-(hydroxy)oxide deposit seed layer on the membranes, and then, chemical bath deposition was applied to deposit zinc oxide nanoparticles on the membranes. The scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) showed that ZnO nanostructures were effectively deposited on the membrane surfaces. The ZnO coated membranes were underwater superoleophobic with oil contact angles greater than 150 degrees. An oil-water separation process driven by gravity demonstrated that the membranes could maintain a permeation flux greater than 250 L/m(2)-h with separation efficiencies above 98%. In addition, the ZnO coated membranes exhibited excellent oil/water separation performance in the reusability and durability tests. The results suggest that the ZnO coated membranes possess not only stability but also comprehensive applicability.
引用
收藏
页码:249 / 257
页数:9
相关论文
共 50 条
  • [21] Bioinspired Underwater Superoleophobic Membrane Based on a Graphene Oxide Coated Wire Mesh for Efficient Oil/Water Separation
    Liu, Yu-Qing
    Zhang, Yong-Lai
    Fu, Xiu-Yan
    Sun, Hong-Bo
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (37) : 20930 - 20936
  • [22] Facile fabrication of versatile superhydrophobic coating for efficient oil/water separation
    Zhang, Taiheng
    Wang, Shuai
    Huang, Jian
    Jin, Yingshan
    Zhao, Guoqing
    Zhang, Chongyang
    Li, Caifeng
    Yu, Jingang
    Jia, Yanlin
    Jiao, Feipeng
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2021, 42 (03) : 363 - 372
  • [23] Fabrication of CuO mesh for efficient oil/water separation
    Paul, Mihir
    Purkayastha, Debarun Dhar
    MATERIALS TODAY-PROCEEDINGS, 2022, 68 : 200 - 203
  • [24] Fabrication of Superhydrophobic Composite Membranes with Honeycomb Porous Structure for Oil/Water Separation
    Zhang, Chunling
    Yang, Yichen
    Luo, Shuai
    Cheng, Chunzu
    Wang, Shuli
    Liu, Bo
    COATINGS, 2022, 12 (11)
  • [25] Design and fabrication of a highly efficient, stable and durable new wettability coated stainless steel mesh for oil/water separation
    Ghadimi, Mohammad Reza
    Azad, Mohammad
    Amirpoor, Setare
    Moakhar, Roozbeh Siavash
    Dolati, Abolghasem
    MATERIALS LETTERS, 2019, 256
  • [26] Facile fabrication of Mxene coated metal mesh-based material for oil/water emulsion separation
    Kalaei, Mohammad Reza Nazarpour
    Heydarinasab, Amir
    Rashidi, Alimorad
    Alaei, Mahshad
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2023, 255
  • [27] Fouling-resistant membranes for separation of oil-in-water emulsions
    Zhang, Guangyu
    Li, Longbiao
    Huang, Yan
    Hozumi, Atsushi
    Sonoda, Tsutomu
    Su, Zhaohui
    RSC ADVANCES, 2018, 8 (10) : 5306 - 5311
  • [28] Substrate-independent polyzwitterionic coating for oil/water separation membranes
    Liang, Bang
    Zhang, Guangyu
    Zhong, Zhenxing
    Sato, Tomoya
    Hozumi, Atsushi
    Su, Zhaohui
    CHEMICAL ENGINEERING JOURNAL, 2019, 362 : 126 - 135
  • [29] Bioinspired fabrication of ZrO2 nanocomposite PVDF membranes with underwater superoleophobicity for oil/water separation
    Wang, Xiaofang
    Yu, Ran
    Pu, Liying
    Chen, Mingqiao
    Zhu, Xingyu
    Fan, Shangpeng
    Liu, Peng
    Shen, Xiang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 707
  • [30] Janus nanofibrous membrane with special micro-nanostructure for highly efficient separation of oil-water emulsion
    Wu, Mingming
    Xiang, Bin
    Mu, Peng
    Li, Jian
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 297