Subexponential loss rate asymptotics for L,vy processes

被引:6
作者
Andersen, Lars Norvang [1 ,2 ]
机构
[1] Aarhus Univ, Dept Math Sci, DK-8000 Aarhus C, Denmark
[2] Aarhus Univ, Bioinformat Res Ctr BiRC, DK-8000 Aarhus C, Denmark
关键词
Finite buffer; Heavy tails; Levy process; Local times; Loss rate; Pollaczeck-Khinchine formula; Subexponential distributions; QUEUE; FLUID;
D O I
10.1007/s00186-010-0335-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a L,vy process reflected in barriers at 0 and K > 0. The loss rate is the mean of the local time at K at time 1 when the process is started in stationarity, and is a natural continuous-time analogue of the stationary expected loss rate for a reflected random walk. We derive asymptotics for the loss rate when K tends to infinity, when the mean of the L,vy process is negative and the positive jumps are subexponential. In the course of this derivation, we achieve a formula, which is a generalization of the celebrated Pollaczeck-Khinchine formula.
引用
收藏
页码:91 / 108
页数:18
相关论文
共 50 条
  • [1] Subexponential loss rate asymptotics for Lévy processes
    Lars Nørvang Andersen
    Mathematical Methods of Operations Research, 2011, 73 : 91 - 108
  • [2] Tail asymptotics for M/G/1 type queueing processes with subexponential increments
    Asmussen, S
    Moller, JR
    QUEUEING SYSTEMS, 1999, 33 (1-3) : 153 - 176
  • [3] Tail asymptotics for M/G/1 type queueing processes with subexponential increments
    Søren Asmussen
    Jakob R. Møller
    Queueing Systems, 1999, 33 : 153 - 176
  • [4] On Exponential Functionals of L,vy Processes
    Behme, Anita
    Lindner, Alexander
    JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (02) : 681 - 720
  • [5] Extremes of subexponential Lévy-driven random fields in the Gumbel domain of attraction
    Mads Stehr
    Anders Rønn-Nielsen
    Extremes, 2022, 25 : 79 - 105
  • [6] Transition Density Estimates for a Class of L,vy and L,vy-Type Processes
    Knopova, Viktorya
    Schilling, Rene L.
    JOURNAL OF THEORETICAL PROBABILITY, 2012, 25 (01) : 144 - 170
  • [7] Local Time Asymptotics for Centered Levy Processes with Two-Sided Reflection
    Andersen, Lars Norvang
    Asmussen, Soren
    STOCHASTIC MODELS, 2011, 27 (02) : 202 - 219
  • [8] On the Favorite Points of Symmetric Lévy Processes
    Bo Li
    Yimin Xiao
    Xiaochuan Yang
    Journal of Theoretical Probability, 2019, 32 : 1943 - 1972
  • [9] Yaglom limit for unimodal Lévy processes
    Armstrong, Gavin
    Bogdan, Krzysztof
    Grzywny, Tomasz
    Lezaj, Lukasz
    Wang, Longmin
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (03): : 1688 - 1721
  • [10] Finite Variation of Fractional L,vy Processes
    Bender, Christian
    Lindner, Alexander
    Schicks, Markus
    JOURNAL OF THEORETICAL PROBABILITY, 2012, 25 (02) : 594 - 612