Notions of Invariance for Abstraction Principles

被引:17
作者
Antonelli, G. Aldo [1 ]
机构
[1] Univ Calif Davis, Dept Philosophy, Davis, CA 95616 USA
关键词
D O I
10.1093/philmat/nkq010
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
The logical status of abstraction principles, and especially Hume's Principle, has been long debated, but the best currently availeble tool for explicating a notion's logical character-permutation invariance-has not received a lot of attention in this debate. This paper aims to fill this gap. After characterizing abstraction principles as particular mappings from the subsets of a domain into that domain and exploring some of their properties, the paper introduces several distinct notions of permutation invariance for such principles, assessing the philosophical significance of each.
引用
收藏
页码:276 / 292
页数:17
相关论文
共 28 条
[1]  
[Anonymous], 1983, LOGIC SEMANTICS META
[2]   Numerical Abstraction via the Frege Quantifier [J].
Antonelli, G. Aldo .
NOTRE DAME JOURNAL OF FORMAL LOGIC, 2010, 51 (02) :161-179
[3]  
ANTONELLI GA, 2010, J PHILOS IN PRESS
[4]  
ANTONELLI GA, 2005, NOTRE DAME J FORM L, V46, P1
[5]  
AVIGAD J, 2002, STANFORD ENCY PHILOS
[6]  
Bonnett AH, 2008, IEEE IND APPL MAG, V14, P29, DOI 10.1109/MIA.2007.909802
[7]  
Boolos George., 1990, MEANING METHOD ESSAY, P261
[8]  
Burgess J. P., 2005, FIXING FREGE
[9]  
COOK R, 2009, REDUCTION ABSTRACTIO, P273
[10]  
Demopoulos William., 1995, FREGES PHILOS MATH