Limits of Free Energy Computation for Protein-Ligand Interactions

被引:64
作者
Merz, Kenneth M., Jr. [1 ]
机构
[1] Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA
基金
美国国家卫生研究院;
关键词
SOLVATION FREE-ENERGIES; MOLECULAR-MECHANICS; TEST SET; DOCKING; BINDING; AFFINITIES; PREDICTION; L-735,524; RECOGNITION; SIMULATIONS;
D O I
10.1021/ct100102q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A detailed error analysis is presented for the computation of protein-ligand interaction energies. In particular, we show that it is probable that even highly accurate computed binding free energies have errors that represent a large percentage of the target free energies of binding. This is due to the observation that the error for computed energies quasi-linearly increases with the increasing number of interactions present in a protein-ligand complex. This principle is expected to hold true for any system that involves an ever increasing number of inter- or intramolecular interactions (e.g., ab initio protein folding). We introduce the concept of best-case scenario errors (BCSerrors) that can be routinely applied to docking and scoring studies and that can used to provide error bars for the computed binding free energies. These BCSerrors form a basis by which one can evaluate the outcome of a docking and scoring exercise. Moreover, the resultant error analysis enables the formation of an hypothesis that defines the best direction to proceed in order to improve scoring functions used in molecular docking studies.
引用
收藏
页码:1769 / 1776
页数:8
相关论文
共 50 条
[31]   Distinct Roles for Conformational Dynamics in Protein-Ligand Interactions [J].
Liu, Xu ;
Speckhard, David C. ;
Shepherd, Tyson R. ;
Sun, Young Joo ;
Hengel, Sarah R. ;
Yu, Liping ;
Fowler, C. Andrew ;
Gakhar, Lokesh ;
Fuentes, Ernesto J. .
STRUCTURE, 2016, 24 (12) :2053-2066
[32]   General and targeted statistical potentials for protein-ligand interactions [J].
Mooij, WTM ;
Verdonk, ML .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 61 (02) :272-287
[33]   NMR-based analysis of protein-ligand interactions [J].
Cala, Olivier ;
Guilliere, Florence ;
Krimm, Isabelle .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2014, 406 (04) :943-956
[34]   Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods [J].
Du, Xing ;
Li, Yi ;
Xia, Yuan-Ling ;
Ai, Shi-Meng ;
Liang, Jing ;
Sang, Peng ;
Ji, Xing-Lai ;
Liu, Shu-Qun .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (02)
[35]   Label-Free Assay for Thermodynamic Analysis of Protein-Ligand Interactions: A Multivariate Strategy for Allosteric Ligand Screening [J].
Gavina, Jennilee M. A. ;
Mazhab-Jafari, Mohammad T. ;
Melacini, Giuseppe ;
Britz-McKibbin, Philip .
BIOCHEMISTRY, 2009, 48 (02) :223-225
[36]   Hydrophobic Protein-Ligand Interactions Preserved in the Gas Phase [J].
Liu, Lan ;
Bagal, Dhanashri ;
Kitova, Elena N. ;
Schnier, Paul D. ;
Klassen, John S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (44) :15980-+
[37]   Can the Energy Gap in the Protein-Ligand Binding Energy Landscape Be Used as a Descriptor in Virtual Ligand Screening? [J].
Grigoryan, Arsen V. ;
Wang, Hong ;
Cardozo, Timothy J. .
PLOS ONE, 2012, 7 (10)
[38]   NMR Applications for Identifying β-TrCP Protein-Ligand Interactions [J].
Pons, J. ;
Tanchou, V. ;
Girault, J. -P. ;
Bertho, G. ;
Evrard-Todeschi, N. .
MINI-REVIEWS IN MEDICINAL CHEMISTRY, 2011, 11 (04) :283-297
[39]   Trimethylsilyl tag for probing protein-ligand interactions by NMR [J].
Becker, Walter ;
Adams, Luke A. ;
Graham, Bim ;
Wagner, Gabriel E. ;
Zangger, Klaus ;
Otting, Gottfried ;
Nitsche, Christoph .
JOURNAL OF BIOMOLECULAR NMR, 2018, 70 (04) :211-218
[40]   A highly accurate metadynamics-based Dissociation Free Energy method to calculate protein-protein and protein-ligand binding potencies [J].
Wang, Jing ;
Ishchenko, Alexey ;
Zhang, Wei ;
Razavi, Asghar ;
Langley, David .
SCIENTIFIC REPORTS, 2022, 12 (01)