Probing Hot Electron Behaviors by Surface-Enhanced Raman Spectroscopy

被引:21
|
作者
Yang, Jing-Liang [1 ]
Wang, Hong-Jia [1 ]
Zhang, Hua [1 ]
Tian, Zhong-Qun [1 ]
Li, Jian-Feng [1 ]
机构
[1] Xiamen Univ, Coll Phys Sci & Technol, Coll Mat,Coll Energy,Fujian Key Lab Adv Mat, Coll Chem & Chem Engn,State Key Lab Phys Chem Sol, Xiamen 361005, Peoples R China
来源
CELL REPORTS PHYSICAL SCIENCE | 2020年 / 1卷 / 09期
基金
中国国家自然科学基金;
关键词
INTERFACIAL CHARGE-TRANSFER; DENSITY-FUNCTIONAL THEORY; METAL NANOPARTICLES; P-AMINOTHIOPHENOL; PLASMON; SILVER; GOLD; EXCITATION; SCATTERING; MOLECULES;
D O I
10.1016/j.xcrp.2020.100184
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Light-excited energetic electrons, or so-called hot electrons (HEs), in plasmonic metal nanostructures have received much attention in the past few years. Plasmonic metal nanostructures, acting as light absorbers with higher efficiency and adjustability than dye molecules and inorganic semiconductors, can generate HEs under specific light conditions. However, the overall efficiency of the plasmonic systems remain unsatisfactory. Therefore, it is important to study the gener ation and transfer processes of plasmon-induced HEs, which are necessary for efficient plasmon-enhanced applications. In this review, we summarize the basic concepts and mechanisms of HE generation and transportation, then highlight the use of in situ surface-enhanced Raman spectroscopy (SERS) as a probe for HE-induced chemical reactions. We also discuss the opportunities and remaining challenges in promoting fundamental understanding of, and practical applications for, HEs.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy
    Lee, SJ
    Morrill, AR
    Moskovits, M
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (07) : 2200 - 2201
  • [22] Probing the interaction of ionic liquids with graphene using surface-enhanced Raman spectroscopy
    Mahurin, Shannon M.
    Surwade, Sumedh P.
    Crespo, Marcos
    Dai, Sheng
    JOURNAL OF RAMAN SPECTROSCOPY, 2016, 47 (05) : 585 - 590
  • [23] Surface-enhanced Raman spectroscopy as a tool for probing specific biochemical components in bacteria
    Zeiri, L
    Bronk, BV
    Shabtai, Y
    Eichler, J
    Efrima, S
    APPLIED SPECTROSCOPY, 2004, 58 (01) : 33 - 40
  • [24] In Situ Probing of Laser Annealing of Plasmonic Substrates with Surface-Enhanced Raman Spectroscopy
    Ma, Chaoxiong
    Fu, Kaiyu
    Trujillo, Michael J.
    Gu, Xin
    Baig, Nameera
    Bohn, Paul W.
    Camden, Jon P.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (20): : 11031 - 11037
  • [25] Microphotoelectrochemical Surface-Enhanced Raman Spectroscopy: Toward Bridging Hot-Electron Transfer with a Molecular Reaction
    Huang, Yi-Fan
    Wang, Wei
    Guo, Hong-Yu
    Zhan, Chao
    Duan, Sai
    Zhan, Dongping
    Wu, De-Yin
    Ren, Bin
    Tian, Zhong-Qun
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (18) : 8483 - 8489
  • [26] Quantifying Hot Electron Energy Contributions in Plasmonic Photocatalysis Using Electrochemical Surface-Enhanced Raman Spectroscopy
    Yu, Linfeng
    Du, Aoxuan
    Yang, Ling
    Hu, Yanfang
    Xie, Wei
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (24): : 5495 - 5500
  • [27] Reproducibility in Surface-Enhanced Raman Spectroscopy
    熊敏
    叶坚
    Journal of Shanghai Jiaotong University(Science), 2014, 19 (06) : 681 - 690
  • [28] Surface-Enhanced Raman Spectroscopy of Graphene
    Schedin, Fred
    Lidorikis, Elefterios
    Lombardo, Antonio
    Kravets, Vasyl G.
    Geim, Andre K.
    Grigorenko, Alexander N.
    Novoselov, Kostya S.
    Ferrari, Andrea C.
    ACS NANO, 2010, 4 (10) : 5617 - 5626
  • [29] Ultrafast surface-enhanced Raman spectroscopy
    Keller, Emily L.
    Brandt, Nathaniel C.
    Cassabaum, Alyssa A.
    Frontiera, Renee R.
    ANALYST, 2015, 140 (15) : 4922 - 4931
  • [30] SURFACE-ENHANCED RAMAN-SPECTROSCOPY
    GARRELL, RL
    ANALYTICAL CHEMISTRY, 1989, 61 (06) : A401 - &