Global isomorphism between the Lennard-Jones fluids and the Ising model

被引:18
作者
Kulinskii, V. L. [1 ]
机构
[1] Odessa Natl Univ, Dept Theoret Phys, UA-65026 Odessa, Ukraine
关键词
ZENO-LINE PARAMETERS; PHASE-EQUILIBRIA; GIBBS ENSEMBLE; CRITICAL-POINT; LIQUID; TRANSITION; SIMULATION; DIAMETER; STATES;
D O I
10.1063/1.3457943
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interpretation of the linear character of the observable classic rectilinear diameter law and the linear character of the Zeno-line (unit compressibility line Z=1) on the basis of global isomorphism between Ising model (lattice gas) and simple fluid is proposed. The correct definition of the limiting nontrivial Zeno state is given and its relation to the locus of the critical point is derived within this approach. We show that the liquid-vapor part of the phase diagram of the molecular fluids can be described as the isomorphic image of the phase diagram of the lattice gas. It is shown how the position of the critical points of the fluids of the Lennard-Jones type can be determined based on the scaling symmetry. As a sequence, the explanation of the well-known fact about "global" cubic character of the coexistence curve of the molecular fluids is proposed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3457943]
引用
收藏
页数:6
相关论文
共 50 条
[41]   Curvature Dependence of Interfacial Properties for Associating Lennard-Jones Fluids: A Density Functional Study [J].
Sun Zong-Li ;
Kang Yan-Shuang .
CHINESE PHYSICS LETTERS, 2011, 28 (02)
[42]   Collision frequency of Lennard-Jones fluids at high densities by equilibrium molecular dynamics simulation [J].
Adebayo, G. A. ;
Anusionwu, B. C. ;
Njah, A. N. ;
Adeniran, O. J. ;
Mathew, B. ;
Sunmonu, R. S. .
PRAMANA-JOURNAL OF PHYSICS, 2010, 75 (03) :523-536
[43]   On the liquid-vapour coexistence curve in a Lennard-Jones fluid [J].
Montes, J. ;
Robles, M. ;
Lopez de Haro, M. .
MOLECULAR PHYSICS, 2019, 117 (23-24) :3550-3555
[44]   Perturbation theories for fluids with short-ranged attractive forces: A case study of the Lennard-Jones spline fluid [J].
Van Westen, Thijs ;
Hammer, Morten ;
Hafskjold, Bjorn ;
Aasen, Ailo ;
Gross, Joachim ;
Wilhelmsen, Oivind .
JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (10)
[45]   Microcanonical Monte Carlo of Lennard-Jones microclusters [J].
Lustig, Rolf .
JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (11)
[46]   Asymmetric assembly of Lennard-Jones Janus dimers [J].
Safaei, Sina ;
Todd, Caleb ;
Yarndley, Jack ;
Hendy, Shaun ;
Willmott, Geoff R. .
PHYSICAL REVIEW E, 2021, 104 (02)
[47]   Modified Lennard-Jones potentials for nanoscale atoms [J].
Sikorska, Celina ;
Gaston, Nicola .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2020, 41 (22) :1985-2000
[48]   Melting transition of confined Lennard-Jones solids in slit pores [J].
Das, Chandan K. ;
Singh, Jayant K. .
THEORETICAL CHEMISTRY ACCOUNTS, 2013, 132 (04) :1-13
[49]   Origin of line tension for a Lennard-Jones nanodroplet [J].
Weijs, Joost H. ;
Marchand, Antonin ;
Andreotti, Bruno ;
Lohse, Detlef ;
Snoeijer, Jacco H. .
PHYSICS OF FLUIDS, 2011, 23 (02)
[50]   Discrete perturbation theory applied to Lennard-Jones and Yukawa potentials [J].
Chapela, Gustavo A. ;
Del Rio, Fernando ;
Laura Benavides, Ana ;
Alejandre, Jose .
JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (23)