Coupled nonlinear Schrodinger equations for two-component wave systems

被引:10
|
作者
Kajinaga, Y [1 ]
Tsuchida, T [1 ]
Wadati, M [1 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
关键词
perturbation method of multiple scales; coupled nonlinear Klein-Gordon equations; integrable coupled nonlinear Schrodinger equations;
D O I
10.1143/JPSJ.67.1565
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the perturbation method of multiple scales, we derive coupled nonlinear Schrodinger equations as amplitude equations from coupled nonlinear Klein-Gordon equations. Such coupled nonlinear Schrodinger equations are not necessarily integrable. We present the reductions to the known integrable coupled nonlinear Schrodinger equations.
引用
收藏
页码:1565 / 1568
页数:4
相关论文
共 50 条
  • [31] Periodic wavetrains for systems of coupled nonlinear Schrodinger equations
    Chow, KW
    Lai, DWC
    PRAMANA-JOURNAL OF PHYSICS, 2001, 57 (5-6): : 937 - 952
  • [32] Travelling wave solutions to the coupled discrete nonlinear Schrodinger equations
    Dai, CQ
    Zhang, JF
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2005, 19 (13): : 2129 - 2143
  • [33] Rogue wave solutions in nonlinear optics with coupled Schrodinger equations
    Ali, Safdar
    Younis, Muhammad
    Ahmad, Muhammad Ozair
    Rizvi, Syed Tahir Raza
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (07)
  • [34] Two-component nonlinear Schrodinger models with a double-well potential
    Wang, C.
    Kevrekidis, P. G.
    Whitaker, N.
    Malomed, B. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (22) : 2922 - 2932
  • [35] On energy stability for the coupled nonlinear wave and Schrodinger systems
    Ma, Li
    Liu, Haihong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) : 4541 - 4550
  • [36] Rogue wave patterns of two-component nonlinear Schrödinger equation coupled to the Boussinesq equation
    Li, Haoying
    Chen, Yu
    Zhou, Dan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [37] Globally conservative weak solutions for a class of two-component nonlinear dispersive wave equations beyond wave breaking
    Zhou, Yonghui
    Li, Xiaowan
    Ji, Shuguan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 427 : 538 - 559
  • [38] Nonlinear wave-wave interaction and stability criterion for parametrically coupled nonlinear Schrodinger equations
    El-Dib, YO
    NONLINEAR DYNAMICS, 2001, 24 (04) : 399 - 418
  • [40] Solitary waves for two and three coupled nonlinear Schrodinger equations
    Hioe, FT
    PHYSICAL REVIEW E, 1998, 58 (05): : 6700 - 6707