Tip-Functionalized Au@Ag Nanorods as Ultrabright Surface-Enhanced Raman Scattering Probes for Bioimaging in Off-Resonance Mode

被引:31
|
作者
Khlebtsov, Boris N. [1 ,2 ]
Bratashov, Daniil N. [2 ]
Khlebtsov, Nikolai G. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Biochem & Physiol Plants & Microorganisms, 13 Prospekt Entuziastov, Saratov 410049, Russia
[2] Saratov Natl Res State Univ, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
基金
俄罗斯科学基金会;
关键词
ANISOTROPIC METAL NANOPARTICLES; GOLD NANORODS; OPTICAL-PROPERTIES; SERS TAGS; PLASMONIC NANOPARTICLES; SEEDED GROWTH; REPORTERS; SHELL; NANOSTRUCTURES; MOLECULES;
D O I
10.1021/acs.jpcc.8b04772
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface-enhanced Raman scattering (SERS) performance of Au nanorods (AuNRs) can be enhanced by the tip adsorption of Raman molecules (RMs) through anisotropic polymer stabilization or through the embedding of RMs between AuNR cores and Ag shells of AuNR@RM@Ag composite particles. We propose a new strategy to design ultrabright SERS probes composed of high-aspect-ratio AuNRs with anisotropic Ag coatings, with preferred adsorption of RMs to open AuNR tips. Specifically, for 4-nitrobenzenethiol (NBT) concentrations above a threshold value c > c(tr), the fabricated Au@NBT@Ag particles had NBT-functionalized open Au tips, as well as anisotropic Ag shells grown on the AuNR sides. The SERS response of these probes with an optimal Ag shell was highest in the off-resonance mode, when the excitation wavelength was far from the plasmon resonance of the Au@NBT@Ag composites. Growing the Ag shell further to completely cover the AuNRs decreased the SERS enhancement. For biocompatibility and stability, the probes were additionally covered with a thin silica layer. Under optimal conditions, the probes demonstrated superstrong and superstable SERS spectra, as compared to those from common SERS tags (AuNRs, nanostars, and Au@Ag NRs) with surface-adsorbed NBT. The excellent SERS performance of the developed ultrabright probes is illustrated by single-particle detection of SERS spectra, Raman imaging of living cells, and deep tissue imaging.
引用
收藏
页码:17983 / 17993
页数:21
相关论文
共 50 条
  • [1] Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods
    Khlebtsov, Boris
    Khanadeev, Vitaly
    Khlebtsov, Nikolai
    NANO RESEARCH, 2016, 9 (08) : 2303 - 2318
  • [2] Patterned Au@Ag Nanoparticles for Surface-Enhanced Raman Scattering
    Huang, Zhenkai
    Chen, Yutong
    Xu, Liguo
    Peng, Jianping
    Liu, Peijiang
    ACS APPLIED NANO MATERIALS, 2024, 7 (21) : 25099 - 25106
  • [3] Tuned Surface-Enhanced Raman Scattering Performance of Undulated Au@Ag Triangles
    Liebig, Ferenc
    Sarhan, Radwan M.
    Prietzel, Claudia
    Schmitt, Clemens N. Z.
    Bargheer, Matias
    Koetz, Joachim
    ACS APPLIED NANO MATERIALS, 2018, 1 (04): : 1995 - 2003
  • [4] Synthesis and Surface-Enhanced Raman Scattering Properties of Au@Ag Core-Shell Nanoellipsoids
    Liu, Yanting
    Shen, Yajing
    2018 INTERNATIONAL CONFERENCE ON MANIPULATION, AUTOMATION AND ROBOTICS AT SMALL SCALES (MARSS), 2018,
  • [5] Au@Ag core-shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance
    Liu, Yanting
    Zhou, Jun
    Wang, Binbing
    Jiang, Tao
    Ho, Ho-Pui
    Petti, Lucia
    Mormile, Pasquale
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (10) : 6819 - 6826
  • [6] Off-Resonant Gold Superstructures as Ultrabright Minimally Invasive Surface-Enhanced Raman Scattering (SERS) Probes
    Tian, Limei
    Tadepalli, Sirimuvva
    Fei, Max
    Morrissey, Jeremiah J.
    Kharasch, Evan D.
    Singamaneni, Srikanth
    CHEMISTRY OF MATERIALS, 2015, 27 (16) : 5678 - 5684
  • [7] Localized Surface Plasmon Resonance and Surface Enhanced Raman Scattering Responses of Au@Ag Core-Shell Nanorods with Different Thickness of Ag Shell
    Ma, Yanan
    Zhou, Jun
    Zou, Weibo
    Jia, Zhenhong
    Petti, Lucia
    Mormile, Pasquale
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (06) : 4245 - 4250
  • [8] Size Tunable Au@Ag Core Shell Nanoparticles: Synthesis and Surface-Enhanced Raman Scattering Properties
    Samal, Akshaya K.
    Polavarapu, Lakshminarayana
    Rodal-Cedeira, Sergio
    Liz-Marzan, Luis M.
    Perez-Juste, Jorge
    Pastoriza-Santos, Isabel
    LANGMUIR, 2013, 29 (48) : 15076 - 15082
  • [9] Polymers as Templates for Au and Au@Ag Bimetallic Nanorods: UV-Vis and Surface Enhanced Raman Spectroscopy
    Contreras-Caceres, Rafael
    Dawson, Claudine
    Formanek, Petr
    Fischer, Dieter
    Simon, Frank
    Janke, Andreas
    Uhlmann, Petra
    Stamm, Manfred
    CHEMISTRY OF MATERIALS, 2013, 25 (02) : 158 - 169
  • [10] Surface-enhanced Raman Scattering and Localized Surface Plasmon Resonance Detection of Aldehydes Using 4-ATP Functionalized Ag Nanorods
    Sinha, Rajeev K.
    PLASMONICS, 2023, 18 (01) : 241 - 253