A Hybrid Brain-Computer Interface Based on the Fusion of P300 and SSVEP Scores

被引:94
作者
Yin, Erwei [1 ]
Zeyl, Timothy [2 ,3 ]
Saab, Rami [4 ]
Chau, Tom [2 ,3 ]
Hu, Dewen [1 ]
Zhou, Zongtan [1 ]
机构
[1] Natl Univ Def Technol, Coll Mechatron Engn & Automat, Changsha 410073, Hunan, Peoples R China
[2] Univ Toronto, Holland Bloorview Kids Rehabil Hosp, Bloorview Res Inst, Toronto, ON M4G 1R8, Canada
[3] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON M4G 1R8, Canada
[4] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON L8S 4L8, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Brain-computer interface (BCI); electroencephalogram (EEG); P300; score fusion; steady-state visually evoked potential (SSVEP); COMBINING P300; BCI; CLASSIFICATION;
D O I
10.1109/TNSRE.2015.2403270
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The present study proposes a hybrid brain-computer interface (BCI) with 64 selectable items based on the fusion of P300 and steady-state visually evoked potential (SSVEP) brain signals. With this approach, row/column (RC) P300 and two-step SSVEP paradigms were integrated to create two hybrid paradigms, which we denote as the double RC (DRC) and 4-D spellers. In each hybrid paradigm, the target is simultaneously detected based on both P300 and SSVEP potentials as measured by the electroencephalogram. We further proposed a maximum-probability estimation (MPE) fusion approach to combine the P300 and SSVEP on a score level and compared this approach to other approaches based on linear discriminant analysis, a naive Bayes classifier, and support vector machines. The experimental results obtained from thirteen participants indicated that the 4-D hybrid paradigm outperformed the DRC paradigm and that the MPE fusion achieved higher accuracy compared with the other approaches. Importantly, 12 of the 13 participants, using the 4-D paradigm achieved an accuracy of over 90% and the average accuracy was 95.18%. These promising results suggest that the proposed hybrid BCI system could be used in the design of a high-performance BCI-based keyboard.
引用
收藏
页码:693 / 701
页数:9
相关论文
共 50 条
  • [21] A comparison study of two P300 speller paradigms for brain-computer interface
    Pan, Jiahui
    Li, Yuanqing
    Gu, Zhenghui
    Yu, Zhuliang
    COGNITIVE NEURODYNAMICS, 2013, 7 (06) : 523 - 529
  • [22] ADAPTING THE P300 BRAIN-COMPUTER INTERFACE TECHNOLOGY TO ASSESS CONDITION OF ANOREXIA NERVOSA PATIENTS
    Ganin, I. P.
    Kosichenko, E. A.
    Sokolov, A., V
    Ioannisyanc, O. M.
    Arefev, I. M.
    Basova, A. Ya
    Kaplan, A. Ya
    BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY, 2019, (02): : 32 - 38
  • [23] P300 Detection with Brain-Computer Interface Application Using PCA and Ensemble of Weighted SVMs
    Kundu, Sourav
    Ari, Samit
    IETE JOURNAL OF RESEARCH, 2018, 64 (03) : 406 - 414
  • [24] A P300 auditory brain-computer interface based on mental repetition
    Marassi, Alessandro
    Budai, Riccardo
    Chittaro, Luca
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2018, 4 (03):
  • [25] A region-based P300 speller for brain-computer interface
    Fazel-Rezai, Reza
    Abhari, Kamyar
    CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVUE CANADIENNE DE GENIE ELECTRIQUE ET INFORMATIQUE, 2009, 34 (03): : 81 - 85
  • [26] Spatial gradient of P300 area in the brain-computer interface paradigm
    Mikhailova, E. S.
    Chicherov, V. A.
    Ptushenko, E. A.
    Shevelev, I. A.
    ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA, 2008, 58 (03) : 302 - 308
  • [27] INTRODUCTION OF A UNIVERSAL P300 BRAIN-COMPUTER INTERFACE COMMUNICATION SYSTEM
    Pinegger, Andreas
    Wriessnegger, Selina
    Mueller-Putz, Gernot
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2013, 58
  • [28] A portable auditory P300 brain-computer interface with directional cues
    Kaethner, Ivo
    Ruf, Carolin A.
    Pasqualotto, Emanuele
    Braun, Christoph
    Birbaumer, Niels
    Halder, Sebastian
    CLINICAL NEUROPHYSIOLOGY, 2013, 124 (02) : 327 - 338
  • [29] Effects of text generation on P300 brain-computer interface performance
    Huggins, Jane E.
    Alcaide-Aguirre, Ramses E.
    Hill, Katya
    BRAIN-COMPUTER INTERFACES, 2016, 3 (02) : 112 - 120
  • [30] INTRODUCTION OF A UNIVERSAL P300 BRAIN-COMPUTER INTERFACE COMMUNICATION SYSTEM
    Pinegger, Andreas
    Wriessnegger, Selina
    Mueller-Putz, Gernot
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2013, 58