Extremal quantum states and their Majorana constellations

被引:42
作者
Bjork, G. [1 ]
Klimov, A. B. [2 ]
de la Hoz, P. [3 ]
Grassl, M. [4 ,5 ]
Leuchs, G. [4 ,5 ]
Sanchez-Soto, L. L. [3 ,4 ,5 ]
机构
[1] Royal Inst Technol KTH, Dept Appl Phys, AlbaNova, S-10691 Stockholm, Sweden
[2] Univ Guadalajara, Dept Fis, Guadalajara 44420, Jalisco, Mexico
[3] Univ Complutense Madrid, Dept Opt, Fac Fis, E-28040 Madrid, Spain
[4] Max Planck Inst Phys Lichts, D-91058 Erlangen, Germany
[5] Univ Erlangen Nurnberg, Inst Opt Informat & Photon, D-91058 Erlangen, Germany
基金
瑞典研究理事会;
关键词
D O I
10.1103/PhysRevA.92.031801
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The characterization of quantum polarization of light requires knowledge of all the moments of the Stokes variables, which are appropriately encoded in the multipole expansion of the density matrix. We look into the cumulative distribution of those multipoles and work out the corresponding extremal pure states. We find that SU(2) coherent states are maximal to any order whereas the converse case of minimal states (which can be seen as the most quantum ones) is investigated for a diverse range of the number of photons. Taking advantage of the Majorana representation, we recast the problem as that of distributing a number of points uniformly over the surface of the Poincare sphere.
引用
收藏
页数:6
相关论文
共 42 条
  • [1] STATE OF UNPOLARIZED RADIATION
    AGARWAL, GS
    [J]. LETTERE AL NUOVO CIMENTO, 1971, 1 (02): : 53 - +
  • [2] [Anonymous], 1996, Journal of Experimental Mathematics, DOI [10.1080/10586458.1996.10504585, DOI 10.1080/10586458.1996.10504585]
  • [3] Exploring pure quantum states with maximally mixed reductions
    Arnaud, Ludovic
    Cerf, Nicolas J.
    [J]. PHYSICAL REVIEW A, 2013, 87 (01):
  • [4] The maximally entangled symmetric state in terms of the geometric measure
    Aulbach, Martin
    Markham, Damian
    Murao, Mio
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [5] Four remarks on spin coherent states
    Baecklund, Anna
    Bengtsson, Ingemar
    [J]. Physica Scripta, 2014, 2014 (T163)
  • [6] Banyai L., 1966, COMMUN MATH PHYS, V2, P121
  • [7] Central-moment description of polarization for quantum states of light
    Bjork, G.
    Soederholm, J.
    Kim, Y-S
    Ra, Y-S
    Lim, H-T
    Kothe, C.
    Kim, Y-H
    Sanchez-Soto, L. L.
    Klimov, A. B.
    [J]. PHYSICAL REVIEW A, 2012, 85 (05):
  • [8] Blum K., 1981, Density Matrix Theory and Applications
  • [9] Optimal frequency measurements with maximally correlated states
    Bollinger, JJ
    Itano, WM
    Wineland, DJ
    Heinzen, DJ
    [J]. PHYSICAL REVIEW A, 1996, 54 (06): : R4649 - R4652
  • [10] Born M., 1980, Principles of Optics, VSixth, P330