On dusty gas model governed by the Kuramoto-Sivashinsky equation

被引:0
作者
Doronin, Gleb G. [1 ]
Larkin, Nikolai A. [1 ]
机构
[1] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2004年 / 23卷 / 01期
关键词
dusty gas; nonlinear problems; global solvability; stability;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Initial and initial-boundary value problems for the Kuramoto-Sivashinsky model of "gas-solid particles" media are considered. Existence, uniqueness and exponential decay of global strong solutions are proved for small initial data.
引用
收藏
页码:67 / 80
页数:14
相关论文
共 50 条
  • [31] Global Existence and Analyticity for the 2D Kuramoto-Sivashinsky Equation
    Ambrose, David M.
    Mazzucato, Anna L.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (03) : 1525 - 1547
  • [32] Boundary Control of the Kuramoto-Sivashinsky Equation Under Intermittent Data Availability
    Maghenem, M.
    Prieur, C.
    Witrant, E.
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 2227 - 2232
  • [33] Analytical solution for the generalized Kuramoto-Sivashinsky equation by the differential transform method
    Hesam, S.
    Nazemi, A. R.
    Haghbin, A.
    SCIENTIA IRANICA, 2013, 20 (06) : 1805 - 1811
  • [34] Global existence for the two-dimensional Kuramoto-Sivashinsky equation with advection
    Feng, Yuanyuan
    Mazzucato, Anna L.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (02) : 279 - 306
  • [35] Bounds on mean energy in the Kuramoto-Sivashinsky equation computed using semidefinite programming
    Goluskin, David
    Fantuzzi, Giovanni
    NONLINEARITY, 2019, 32 (05) : 1705 - 1730
  • [36] An in-depth numerical study of the two-dimensional Kuramoto-Sivashinsky equation
    Kalogirou, A.
    Keaveny, E. E.
    Papageorgiou, D. T.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2179):
  • [37] Stability of localized pulse trains with a long tail in the generalized Kuramoto-Sivashinsky equation
    Ito, Yuko
    Kato, Yuki
    Fujimura, Kaoru
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (06)
  • [38] ABOUT CLASSICAL SOLUTIONS FOR HIGH ORDER CONSERVED KURAMOTO-SIVASHINSKY TYPE EQUATION
    Coclite, Giuseppe Maria
    Di Ruvo, Lorenzo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (12): : 4793 - 4820
  • [39] Local Bifurcations in the Periodic Boundary Value Problem for the Generalized Kuramoto-Sivashinsky Equation
    Kulikov, A. N.
    Kulikov, D. A.
    AUTOMATION AND REMOTE CONTROL, 2017, 78 (11) : 1955 - 1966
  • [40] Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation
    Cerpa, Eduardo
    Mercado, Alberto
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) : 2024 - 2044