Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data

被引:145
作者
Yuan, Lei [2 ]
Wang, Yalin
Thompson, Paul M. [3 ]
Narayan, Vaibhav A. [4 ]
Ye, Jieping [1 ,2 ]
机构
[1] Arizona State Univ, Biodesign Inst, Dept Comp Sci & Engn, Ctr Evolutionary Med & Informat, Tempe, AZ 85287 USA
[2] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ 85287 USA
[3] Univ Calif Los Angeles, Dept Neurol, Lab Neuro Imaging, Los Angeles, CA 90024 USA
[4] Johnson & Johnson Pharmaceut Res & Dev LLC, Titusville, NJ USA
基金
美国国家卫生研究院; 美国国家科学基金会; 加拿大健康研究院;
关键词
Multi-source feature learning; Multi-task learning; Incomplete data; Ensemble; ALZHEIMERS-DISEASE; COMPONENT ANALYSIS; CSF BIOMARKERS; MISSING DATA; FUSING FMRI; MRI; REGRESSION; ATROPHY; CLASSIFICATION; HIPPOCAMPAL;
D O I
10.1016/j.neuroimage.2012.03.059
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent half of the subjects do not have fluorodeoxyglucose positron emission tomography (FDG-PET) scans; many lack proteomics measurements. Traditionally, subjects with missing measures are discarded, resulting in a severe loss of available information. In this paper, we address this problem by proposing an incomplete Multi-Source Feature (iMSF) learning method where all the samples (with at least one available data source) can be used. To illustrate the proposed approach, we classify patients from the ADNI study into groups with Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal controls, based on the multi-modality data. At baseline, ADNI's 780 participants (172 AD, 397 MCI, 211 NC), have at least one of four data types: magnetic resonance imaging (MRI), FDG-PET, CSF and proteomics. These data are used to test our algorithm. Depending on the problem being solved, we divide our samples according to the availability of data sources, and we learn shared sets of features with state-of-the-art sparse learning methods. To build a practical and robust system, we construct a classifier ensemble by combining our method with four other methods for missing value estimation. Comprehensive experiments with various parameters show that our proposed iMSF method and the ensemble model yield stable and promising results. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:622 / 632
页数:11
相关论文
共 60 条
  • [31] Ji SW, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P407
  • [32] Boosting power for clinical trials using classifiers based on multiple biomarkers
    Kohannim, Omid
    Hua, Xue
    Hibar, Derrek P.
    Lee, Suh
    Chou, Yi-Yu
    Toga, Arthur W.
    Jack, Clifford R., Jr.
    Weiner, Michael W.
    Thompson, Paul M.
    [J]. NEUROBIOLOGY OF AGING, 2010, 31 (08) : 1429 - 1442
  • [33] Kuljis Rodrigo O, 2010, Front Neurol, V1, P4, DOI 10.3389/fneur.2010.00004
  • [34] Classifier ensembles for fMRI data analysis: an experiment
    Kuncheva, Ludmila I.
    Rodriguez, Juan J.
    [J]. MAGNETIC RESONANCE IMAGING, 2010, 28 (04) : 583 - 593
  • [35] Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI
    Landau, Susan M.
    Harvey, Danielle
    Madison, Cindee M.
    Koeppe, Robert A.
    Reiman, Eric M.
    Foster, Norman L.
    Weiner, Michael W.
    Jagust, William J.
    [J]. NEUROBIOLOGY OF AGING, 2011, 32 (07) : 1207 - 1218
  • [36] Introduction to machine learning for brain imaging
    Lemm, Steven
    Blankertz, Benjamin
    Dickhaus, Thorsten
    Mueller, Klaus-Robert
    [J]. NEUROIMAGE, 2011, 56 (02) : 387 - 399
  • [37] Liu J., 2013, SLEP: Sparse Learning with Efficient Projections
  • [38] Liu J., 2010, P 16 ACM SIGKDD INT, P323
  • [39] Liu J., 2009, Proceedings of the Conference on Uncertainty in Artificial Intelligence, P339, DOI DOI 10.5555/1795114.1795154
  • [40] Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer's disease
    Lopez, M.
    Ramirez, J.
    Gorriz, J. M.
    Alvarez, I.
    Salas-Gonzalez, D.
    Segovia, F.
    Chaves, R.
    Padilla, P.
    Gomez-Rio, M.
    [J]. NEUROCOMPUTING, 2011, 74 (08) : 1260 - 1271