A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems

被引:21
作者
Abdulle, Assyr [1 ]
Vilmart, Gilles [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Sect Math, CH-1015 Lausanne, Switzerland
关键词
RITZ-GALERKIN METHODS; APPROXIMATIONS; UNIQUENESS; THEOREMS;
D O I
10.1007/s00211-011-0438-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The effect of numerical quadrature in finite element methods for solving quasilinear elliptic problems of nonmonotone type is studied. Under similar assumption on the quadrature formula as for linear problems, optimal error estimates in the L (2) and the H (1) norms are proved. The numerical solution obtained from the finite element method with quadrature formula is shown to be unique for a sufficiently fine mesh. The analysis is valid for both simplicial and rectangular finite elements of arbitrary order. Numerical experiments corroborate the theoretical convergence rates.
引用
收藏
页码:397 / 431
页数:35
相关论文
共 31 条
[1]  
Abdulle, 2009, GAKUTO INT MSA, V31, P135
[2]   The effect of numerical integration in the finite element method for nonmonotone nonlinear elliptic problems with application to numerical homogenization methods [J].
Abdulle, Assyr ;
Vilmart, Gilles .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (19-20) :1041-1046
[3]   Uniqueness and nonuniqueness for the approximation of quasilinear elliptic equations [J].
Andre, N ;
Chipot, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (05) :1981-1994
[4]  
[Anonymous], 1998, CLASSICS MATH
[5]  
[Anonymous], 2011, SER CONT APPL MATH C
[6]  
Aziz A., 1972, MATH FDN FINITE ELEM
[7]   EFFECT OF QUADRATURE ERRORS ON FINITE-ELEMENT APPROXIMATIONS FOR 2ND ORDER HYPERBOLIC EQUATIONS [J].
BAKER, GA ;
DOUGALIS, VA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (04) :577-598
[8]  
Bear J., 1991, Introduction to modelling of transport phenomena in porous media
[9]  
Brenner S.C., 2008, MATH THEORY FINITE E, V15
[10]  
Chipot M, 2009, BIRKHAUSER ADV TEXTS, P3