Hopf bifurcation in an age-structured SIR epidemic model

被引:19
作者
Kuniya, Toshikazu [1 ]
机构
[1] Kobe Univ, Grad Sch Syst Informat, Nada Ku, 1-1 Rokkodai Cho, Kobe, Hyogo 6578501, Japan
基金
日本学术振兴会;
关键词
SIR. epidemic model; Age structure; Basic reproduction number; Stability; Hopf bifurcation; STABILITY; THRESHOLD; DYNAMICS;
D O I
10.1016/j.aml.2018.12.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the occurrence of a sustained periodic solution via the Hopf bifurcation in an age-structured SIR epidemic model. Under the assumption that the transmission rate depends on the age of infective individuals and the product of the transmission rate and the population age distribution is concentrated in a specific age, we reformulate the model into an integral equation of Fredholm type. We then define the basic reproduction number R-0 and show that the unique positive endemic equilibrium of the integral equation exists if and only if R-0 > 1. We derive a characteristic equation for the endemic equilibrium, and regarding the specific age as a bifurcation parameter, we obtain a sufficient condition for the occurrence of the Hopf bifurcation. Finally, we provide a numerical example that supports our theoretical result. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:22 / 28
页数:7
相关论文
共 20 条
  • [1] Stability analysis of HIV-1 model with multiple delays
    Ali, Nigar
    Zaman, Gul
    Algahtani, Obaid
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [2] Andreasen V., 1995, MATH POPULATION DYNA, P3
  • [3] Geometric stability switch criteria in delay differential systems with delay dependent parameters
    Beretta, E
    Kuang, Y
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (05) : 1144 - 1165
  • [4] Oscillations in a patchy environment disease model
    Brauer, Fred
    Van den Driessche, P.
    Wang, Lin
    [J]. MATHEMATICAL BIOSCIENCES, 2008, 215 (01) : 1 - 10
  • [5] Cha Y., 2000, DYNAM SYST APPL, V9, P361
  • [6] DIEKMANN O, 1990, J MATH BIOL, V28, P365
  • [7] Global Hopf bifurcation of an SIRS epidemic model with age-dependent recovery
    Duan, Xi-Chao
    Yin, Jun-Feng
    Li, Xue-Zhi
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 104 : 613 - 624
  • [8] MULTIPLE ENDEMIC STATES IN AGE-STRUCTURED SIR EPIDEMIC MODELS
    Franceschetti, Andrea
    Pugliese, Andrea
    Breda, Dimitri
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2012, 9 (03) : 577 - 599
  • [9] Guo H., 2006, Can. Appl. Math. Q., V14, P259
  • [10] INABA H, 1990, J MATH BIOL, V28, P411