Solution existence and stability of quadratically constrained convex quadratic programs

被引:15
作者
Kim, D. S. [1 ]
Tam, N. N. [2 ]
Yen, N. D. [3 ]
机构
[1] Pukyong Natl Univ, Dept Appl Math, Pusan 608737, South Korea
[2] Hanoi Pedag Inst 2, Dept Math, Me Linh, Vinh Phuc, Vietnam
[3] Vietnamese Acad Sci & Technol, Inst Math, Hanoi 10307, Vietnam
基金
新加坡国家研究基金会;
关键词
Convex quadratic program; Solution existence; Recession cone; Eaves-type theorem; Stability analysis;
D O I
10.1007/s11590-011-0300-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose verifiable necessary and sufficient conditions for the solution existence of a convex quadratic program whose constraint set is defined by finitely many convex linear-quadratic inequalities. A related stability analysis of the problem is also considered.
引用
收藏
页码:363 / 373
页数:11
相关论文
共 12 条
[1]  
[Anonymous], 2003, NONLINEAR PROGRAMMIN
[2]   Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming [J].
Anstreicher, Kurt M. .
JOURNAL OF GLOBAL OPTIMIZATION, 2009, 43 (2-3) :471-484
[3]  
Belousov E.G., 1977, Introduction to Convex Analysis and Integer Programming
[4]   A Frank-Wolfe type theorem for convex polynomial programs [J].
Belousov, EG ;
Klatte, D .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 22 (01) :37-48
[5]   On Solvability of Convex Noncoercive Quadratic Programming Problems [J].
Dostal, Z. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 143 (02) :413-416
[6]  
EAVES BC, 1971, MANAGE SCI, V17, P697
[7]  
LEE G. M., 2005, NONCON OPTIM ITS APP
[8]   On extensions of the Frank-Wolfe theorems [J].
Luo, ZQ ;
Zhang, SZ .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 13 (1-3) :87-110
[9]   A simplicial branch-and-bound method for solving nonconvex all-quadratic programs [J].
Raber, U .
JOURNAL OF GLOBAL OPTIMIZATION, 1998, 13 (04) :417-432
[10]  
ROBINSON SM, 1979, MATH PROGRAM STUD, V10, P128, DOI 10.1007/BFb0120850