Periodic orbits of a neuron model with periodic internal decay rate

被引:3
作者
Bula, I. [1 ,2 ]
Radin, M. A. [3 ]
机构
[1] Latvian State Univ, LV-1002 Riga, Latvia
[2] Latvian State Univ, Inst Math & Comp Sci, LV-1048 Riga, Latvia
[3] Rochester Inst Technol, Rochester, NY 14623 USA
关键词
Neuron model; Difference equation; Periodic orbits; Stability; TIME NETWORK MODEL; DISCRETE;
D O I
10.1016/j.amc.2015.05.097
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we will study a non autonomous piece wise linear difference equation which describes a discrete version of a single neuron model with a periodic internal decay rate. We will investigate the periodic behavior of solutions relative to the periodic internal decay rate. Furthermore, we will show that only periodic orbits of even periods can exist and show their stability character. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:293 / 303
页数:11
相关论文
共 50 条
  • [41] ON THE CONTROL OF STABILITY OF PERIODIC ORBITS OF COMPLETELY INTEGRABLE SYSTEMS
    Tudoran, Razvan M.
    JOURNAL OF GEOMETRIC MECHANICS, 2015, 7 (01) : 109 - 124
  • [42] Periodic orbits in the gravity field of a fixed homogeneous cube
    Xiaodong Liu
    Hexi Baoyin
    Xingrui Ma
    Astrophysics and Space Science, 2011, 334 : 357 - 364
  • [43] A database of planar axisymmetric periodic orbits for the Solar system
    Ricardo L. Restrepo
    Ryan P. Russell
    Celestial Mechanics and Dynamical Astronomy, 2018, 130
  • [44] Spontaneous Periodic Orbits in the Navier-Stokes Flow
    van den Berg, Jan Bouwe
    Breden, Maxime
    Lessard, Jean-Philippe
    van Veen, Lennaert
    JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (02)
  • [45] A Modified Poincar, Method for the Persistence of Periodic Orbits and Applications
    Hale, Jack K.
    Raugel, Genevieve
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2010, 22 (01) : 3 - 68
  • [46] Periodic orbits associated to Hamiltonian functions of degree four
    Carrasco-Olivera, Dante
    Uribe, Marco
    Vidal, Claudio
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2014, 21 (03) : 336 - 356
  • [47] Periodic orbits in the gravity field of a fixed homogeneous cube
    Liu, Xiaodong
    Baoyin, Hexi
    Ma, Xingrui
    ASTROPHYSICS AND SPACE SCIENCE, 2011, 334 (02) : 357 - 364
  • [48] A database of planar axisymmetric periodic orbits for the Solar system
    Restrepo, Ricardo L.
    Russell, Ryan P.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2018, 130 (07)
  • [49] On the periodic orbits of the perturbed Wilberforce pendulum
    Teresa de Bustos, M.
    Lopez, Miguel A.
    Martinez, Raquel
    JOURNAL OF VIBRATION AND CONTROL, 2016, 22 (04) : 932 - 939
  • [50] Chaotic diffusion on periodic orbits and uniformity
    Dana, I
    Chernov, VE
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 330 (1-2) : 253 - 258