Periodic orbits of a neuron model with periodic internal decay rate

被引:3
|
作者
Bula, I. [1 ,2 ]
Radin, M. A. [3 ]
机构
[1] Latvian State Univ, LV-1002 Riga, Latvia
[2] Latvian State Univ, Inst Math & Comp Sci, LV-1048 Riga, Latvia
[3] Rochester Inst Technol, Rochester, NY 14623 USA
关键词
Neuron model; Difference equation; Periodic orbits; Stability; TIME NETWORK MODEL; DISCRETE;
D O I
10.1016/j.amc.2015.05.097
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we will study a non autonomous piece wise linear difference equation which describes a discrete version of a single neuron model with a periodic internal decay rate. We will investigate the periodic behavior of solutions relative to the periodic internal decay rate. Furthermore, we will show that only periodic orbits of even periods can exist and show their stability character. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:293 / 303
页数:11
相关论文
共 50 条
  • [21] REVERSIBILITY AND BRANCHING OF PERIODIC ORBITS
    Mereu, Ana Cristina
    Teixeira, Marco Antonio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (03) : 1177 - 1199
  • [22] Construction of Periodic Orbits and Chaos
    Zhang Yongdong Postdoctoral R&D Base
    Journal of Systems Engineering and Electronics, 2002, (01) : 34 - 41
  • [23] Isolating blocks for periodic orbits
    Bertolim, M. A.
    De Rezende, K. A.
    Neto, O. Manzoli
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2007, 13 (01) : 121 - 134
  • [24] On doubly symmetric periodic orbits
    Frauenfelder, Urs
    Moreno, Agustin
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2023, 135 (02)
  • [25] On r-periodic orbits of k-periodic maps
    Beyn, Wolf-Juergen
    Huels, Thorsten
    Samtenschnieder, Malte-Christopher
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2008, 14 (08) : 865 - 887
  • [26] PERIODIC AND QUASI-PERIODIC ORBITS OF THE DISSIPATIVE STANDARD MAP
    Celletti, Alessandra
    Di Ruzza, Sara
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (01): : 151 - 171
  • [27] Isolating Blocks for Periodic Orbits
    M. A. Bertolim
    K. A. de Rezende
    O. Manzoli Neto
    Journal of Dynamical and Control Systems, 2007, 13 : 121 - 134
  • [28] Regular and irregular periodic orbits
    Contopoulos, G
    Grousouzakou, E
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1996, 65 (1-2) : 33 - 56
  • [29] Existence and stability of periodic orbits of periodic difference equations with delays
    Alsharawi, Ziyad
    Angelos, James
    Elaydi, Saber
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (01): : 203 - 217
  • [30] Networks of planar symmetric periodic orbits in a barred galaxy model
    Zotos, Euaggelos E.
    Jung, Christof
    Papadakis, Konstandinos E.
    Saeed, Tareq
    ASTRONOMISCHE NACHRICHTEN, 2020, 341 (6-7) : 684 - 702