Periodic orbits of a neuron model with periodic internal decay rate

被引:3
|
作者
Bula, I. [1 ,2 ]
Radin, M. A. [3 ]
机构
[1] Latvian State Univ, LV-1002 Riga, Latvia
[2] Latvian State Univ, Inst Math & Comp Sci, LV-1048 Riga, Latvia
[3] Rochester Inst Technol, Rochester, NY 14623 USA
关键词
Neuron model; Difference equation; Periodic orbits; Stability; TIME NETWORK MODEL; DISCRETE;
D O I
10.1016/j.amc.2015.05.097
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we will study a non autonomous piece wise linear difference equation which describes a discrete version of a single neuron model with a periodic internal decay rate. We will investigate the periodic behavior of solutions relative to the periodic internal decay rate. Furthermore, we will show that only periodic orbits of even periods can exist and show their stability character. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:293 / 303
页数:11
相关论文
共 50 条
  • [1] Periodic Orbits of Single Neuron Models with Internal Decay Rate 0 ≤ β ≤ 1
    Aniismova, Aija
    Avotina, Maruta
    Bula, Inese
    MATHEMATICAL MODELLING AND ANALYSIS, 2013, 18 (03) : 325 - 345
  • [2] Periodic and Chaotic Orbits of a Neuron Model
    Anisimova, Aija
    Avotina, Maruta
    Bula, Inese
    MATHEMATICAL MODELLING AND ANALYSIS, 2015, 20 (01) : 30 - 52
  • [3] Neuron model with a period three internal decay rate
    Bula, Inese
    Radin, Michael A.
    Wilkins, Nicholas
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (46) : 1 - 19
  • [4] Eventually periodic solutions of single neuron model
    Bula, Inese
    Radin, Michael A.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2020, 25 (06): : 903 - 918
  • [5] Chaotic single neuron model with periodic coefficients with period two
    Bula, Inese
    Radin, Michael A.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2024, 29 (01): : 111 - 123
  • [6] Periodic orbits in periodic discrete dynamics
    AlSharawi, Ziyad
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (08) : 1966 - 1974
  • [7] Periodic orbits for fuzzy flows
    Ceeconello, M. S.
    Bassanezi, R. C.
    Brandao, A. V.
    Leite, J.
    FUZZY SETS AND SYSTEMS, 2013, 230 : 21 - 38
  • [8] Periodic orbits in gravitational systems
    Hadjedemetriou, John D.
    Chaotic Worlds: From Order to Disorder in Gravitational N-Body Dynamical Systems, 2006, 227 : 43 - 79
  • [9] A study of periodic orbits near Europa
    Bury, Luke
    McMahon, Jay
    Lo, Martin
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2022, 134 (03)
  • [10] The periodic solutions of a stochastic chemostat model with periodic washout rate
    Wang, Liang
    Jiang, Daqing
    O'Regan, Donal
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 37 : 1 - 13