Statistical linearisation of a nonlinear floating offshore wind turbine under random waves and winds

被引:15
|
作者
Da Silva, L. S. P. [1 ,2 ]
De Oliveira, M. [3 ]
Cazzolato, B. [1 ]
Sergiienko, N. [1 ]
Amaral, G. A. [4 ]
Ding, B. [1 ]
机构
[1] Univ Adelaide, Sch Mech Engn, Adelaide, Australia
[2] Delmar Syst, Perth, Australia
[3] Univ Sao Paulo, Dept Mech Engn, Escola Politecn, Sao Paulo, Brazil
[4] Univ Sao Paulo, Offshore Mech Lab, Escola Politecn, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Floating offshore wind turbine; Statistical linearisation; Frequency-domain; Aerodynamic admittance; Nonlinear dynamics; FREQUENCY-DOMAIN MODEL; ADMITTANCE FUNCTION; DYNAMIC-RESPONSE; COUPLED ANALYSIS; IMPACT; LOADS;
D O I
10.1016/j.oceaneng.2022.112033
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This paper investigates the stochastic nonlinear dynamics of a floating offshore wind turbine (FOWT) in the frequency-domain under irregular waves and turbulent winds. The main sources of nonlinearities are estimated using statistical linearisation, which are calculated based on probability density functions (PDFs) between the degrees-of-freedom and the environment. The nonlinear mooring model captures the coupling between degrees -of-freedom when the platform has a mean displacement caused by the wind thrust, changing the natural frequency especially in surge. In addition, the nonlinear viscous drag loads offer an hydrodynamic damping that lead to better estimates of the responses. The nonlinear aerodynamic loads uses the relative motion experienced by the wind turbine under turbulent wind, and the concept of aerodynamic admittance function, which has not been applied yet to FOWTs, is included to capture the spatial effects of the wind turbulence. The results are benchmarked against nonlinear time-domain simulations using OpenFAST, and good agreement is obtained in terms of power spectral densities, PDFs and standard deviations. Several environmental conditions are used to explore some of the platform characteristics and salient features from the model. The main advantage of the following approach is the low computational cost, while providing reliable estimates of the response.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Hydrodynamic Analysis of the WIND-Bos Spar Floating Offshore Wind Turbine
    Hallak, Thiago S.
    Soares, C. Guedes
    Sainz, Oscar
    Hernandez, Sergio
    Arevalo, Alfonso
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (12)
  • [22] Experimental and Numerical Analysis of a 10 MW Floating Offshore Wind Turbine in Regular Waves
    Ahn, Hyeonjeong
    Shin, Hyunkyoung
    ENERGIES, 2020, 13 (10)
  • [23] Nonlinear hydrodynamics of floating offshore wind turbines: A review
    Zeng, Xinmeng
    Shao, Yanlin
    Feng, Xingya
    Xu, Kun
    Jin, Ruijia
    Li, Huajun
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 191
  • [24] Routing optimisation for towing a floating offshore wind turbine under weather constraints
    Le Pivert, Frederic
    Lopez-Santander, Adan
    Craven, Matthew J.
    Roberts, Adam
    OCEAN ENGINEERING, 2024, 305
  • [25] Numerical Modelling of Dynamic Responses of a Floating Offshore Wind Turbine Subject to Focused Waves
    Zhou, Yang
    Xiao, Qing
    Liu, Yuanchuan
    Incecik, Atilla
    Peyrard, Christophe
    Li, Sunwei
    Pan, Guang
    ENERGIES, 2019, 12 (18)
  • [26] Motion Analysis of International Energy Agency Wind 15 MW Floating Offshore Wind Turbine under Extreme Conditions
    Chang, Zengliang
    Zheng, Yueming
    Qu, Meng
    Gao, Xingguo
    Tian, Xiaojie
    Liu, Guijie
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (07)
  • [27] A coupled finite difference mooring dynamics model for floating offshore wind turbine analysis
    Chen, Lin
    Basu, Biswajit
    Nielsen, Soren R. K.
    OCEAN ENGINEERING, 2018, 162 : 304 - 315
  • [28] Research on pitch control of floating offshore wind turbine
    Yu W.
    Ding Q.
    Li C.
    Hao W.
    Han Z.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (01): : 143 - 148
  • [29] Numerical Simulation of a Floating Offshore Wind Turbine in Wind and Waves Based on a Coupled CFD-FEA Approach
    Song, Xuemin
    Bi, Xueqing
    Liu, Weiqin
    Guo, Xiaoxuan
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (08)
  • [30] Platform Oscillation Reduction of a Floating Offshore Wind Turbine
    Niu, Yue
    Nagamune, Ryozo
    IFAC PAPERSONLINE, 2023, 56 (03): : 205 - 210