Topography of the Chimpanzee Corpus Callosum

被引:22
|
作者
Phillips, Kimberley A. [1 ,2 ]
Hopkins, William D. [3 ,4 ]
机构
[1] Trinity Univ, Dept Psychol, San Antonio, TX 78212 USA
[2] SW Natl Primate Res Ctr, Texas Biomed Res Inst, San Antonio, TX USA
[3] Agnes Scott Coll, Dept Psychol, Decatur, GA 30030 USA
[4] Yerkes Natl Primate Res Ctr, Div Dev & Cognit Neurosci, Atlanta, GA USA
来源
PLOS ONE | 2012年 / 7卷 / 02期
关键词
DIFFUSION-TENSOR; FIBER COMPOSITION; SIGNAL INTENSITY; SEX-DIFFERENCES; WHITE-MATTER; EVOLUTION; SIZE; MORPHOLOGY; AGE; CONNECTIVITY;
D O I
10.1371/journal.pone.0031941
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The corpus callosum (CC) is the largest commissural white matter tract in mammalian brains, connecting homotopic and heterotopic regions of the cerebral cortex. Knowledge of the distribution of callosal fibers projecting into specific cortical regions has important implications for understanding the evolution of lateralized structures and functions of the cerebral cortex. No comparisons of CC topography in humans and great apes have yet been conducted. We investigated the topography of the CC in 21 chimpanzees using high-resolution magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Tractography was conducted based on fiber assignment by continuous tracking (FACT) algorithm. We expected chimpanzees to display topographical organization similar to humans, especially concerning projections into the frontal cortical regions. Similar to recent studies in humans, tractography identified five clusters of CC fibers projecting into defined cortical regions: prefrontal; premotor and supplementary motor; motor; sensory; parietal, temporal and occipital. Significant differences in fractional anisotropy (FA) were found in callosal regions, with highest FA values in regions projecting to higher-association areas of posterior cortical (including parietal, temporal and occipital cortices) and prefrontal cortical regions (p<0.001). The lowest FA values were seen in regions projecting into motor and sensory cortical areas. Our results indicate chimpanzees display similar topography of the CC as humans, in terms of distribution of callosal projections and microstructure of fibers as determined by anisotropy measures.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Scaling of the corpus callosum in wild and domestic canids: Insights into the domesticated brain
    Spocter, Muhammad A.
    Uddin, Ashraf
    Ng, Johnny C.
    Wong, Edmund
    Wang, Victoria X.
    Tang, Cheuk
    Wicinski, Bridget
    Haas, Jordan
    Bitterman, Kathleen
    Raghanti, Mary Ann
    Dunn, Rachel
    Hof, Patrick R.
    Sherwood, Chet C.
    Jovanovik, Jelena
    Rusbridge, Clare
    Manger, Paul R.
    JOURNAL OF COMPARATIVE NEUROLOGY, 2018, 526 (15) : 2341 - 2359
  • [42] Statistical shape analysis of the corpus callosum in Schizophrenia
    Joshi, Shantanu H.
    Narr, Katherine L.
    Philips, Owen R.
    Nuechterlein, Keith H.
    Asarnow, Robert F.
    Toga, Arthur W.
    Woods, Roger P.
    NEUROIMAGE, 2013, 64 : 547 - 559
  • [43] Agenesis of the corpus callosum and autism: a comprehensive comparison
    Paul, Lynn K.
    Corsello, Christina
    Kennedy, Daniel P.
    Adolphs, Ralph
    BRAIN, 2014, 137 : 1813 - 1829
  • [44] Tractography of the Corpus Callosum in Huntington's Disease
    Phillips, Owen
    Sanchez-Castaneda, Cristina
    Elifani, Francesca
    Maglione, Vittorio
    Di Pardo, Alba
    Caltagirone, Carlo
    Squitieri, Ferdinando
    Sabatini, Umberto
    Di Paola, Margherita
    PLOS ONE, 2013, 8 (09):
  • [45] The structure of the corpus callosum in obsessive compulsive disorder
    Di Paola, M.
    Luders, E.
    Rubino, I. A.
    Siracusano, A.
    Manfredi, G.
    Girardi, P.
    Martinotti, G.
    Thompson, P. M.
    Chou, Y. -Y.
    Toga, A. W.
    Caltagirone, C.
    Spalletta, G.
    EUROPEAN PSYCHIATRY, 2013, 28 (08) : 499 - 506
  • [46] Morphometry of Corpus Callosum in South Indian Population
    Poleneni, Sushma Rao
    Jakka, Lakshmi Durga
    Chandrupatla, Mrudula
    Vinodini, L.
    Ariyanachi, K.
    ANNALS OF NEUROSCIENCES, 2021, 28 (3-4) : 150 - 155
  • [47] Genetic Contributions to the Midsagittal Area of the Corpus Callosum
    Phillips, Kimberley A.
    Rogers, Jeffrey
    Barrett, Elizabeth A.
    Glahn, David C.
    Kochunov, Peter
    TWIN RESEARCH AND HUMAN GENETICS, 2012, 15 (03) : 315 - 323
  • [48] Corpus callosum area in children and adults with autism
    Prigge, Molly B. D.
    Lange, Nicholas
    Bigler, Erin D.
    Merkley, Tricia L.
    Neeley, E. Shannon
    Abildskov, Tracy J.
    Froehlich, Alyson L.
    Nielsen, Jared A.
    Cooperrider, Jason R.
    Cariello, Annahir N.
    Ravichandran, Caitlin
    Alexander, Andrew L.
    Lainhart, Janet E.
    RESEARCH IN AUTISM SPECTRUM DISORDERS, 2013, 7 (02) : 221 - 234
  • [49] CORPUS CALLOSUM SHAPE ANALYSIS WITH APPLICATION TO DYSLEXIA
    Casanova, Manuel F.
    El-Baz, Ayman
    Elnakib, Ahmed
    Giedd, Jay
    Rumsey, Judith M.
    Williams, Emily L.
    Switala, Andrew E.
    TRANSLATIONAL NEUROSCIENCE, 2010, 1 (02) : 124 - 130
  • [50] The Corpus Callosum and Forensic Issues-An Overview
    Byard, Roger W.
    JOURNAL OF FORENSIC SCIENCES, 2016, 61 (04) : 979 - 983