Topography of the Chimpanzee Corpus Callosum

被引:22
|
作者
Phillips, Kimberley A. [1 ,2 ]
Hopkins, William D. [3 ,4 ]
机构
[1] Trinity Univ, Dept Psychol, San Antonio, TX 78212 USA
[2] SW Natl Primate Res Ctr, Texas Biomed Res Inst, San Antonio, TX USA
[3] Agnes Scott Coll, Dept Psychol, Decatur, GA 30030 USA
[4] Yerkes Natl Primate Res Ctr, Div Dev & Cognit Neurosci, Atlanta, GA USA
来源
PLOS ONE | 2012年 / 7卷 / 02期
关键词
DIFFUSION-TENSOR; FIBER COMPOSITION; SIGNAL INTENSITY; SEX-DIFFERENCES; WHITE-MATTER; EVOLUTION; SIZE; MORPHOLOGY; AGE; CONNECTIVITY;
D O I
10.1371/journal.pone.0031941
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The corpus callosum (CC) is the largest commissural white matter tract in mammalian brains, connecting homotopic and heterotopic regions of the cerebral cortex. Knowledge of the distribution of callosal fibers projecting into specific cortical regions has important implications for understanding the evolution of lateralized structures and functions of the cerebral cortex. No comparisons of CC topography in humans and great apes have yet been conducted. We investigated the topography of the CC in 21 chimpanzees using high-resolution magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Tractography was conducted based on fiber assignment by continuous tracking (FACT) algorithm. We expected chimpanzees to display topographical organization similar to humans, especially concerning projections into the frontal cortical regions. Similar to recent studies in humans, tractography identified five clusters of CC fibers projecting into defined cortical regions: prefrontal; premotor and supplementary motor; motor; sensory; parietal, temporal and occipital. Significant differences in fractional anisotropy (FA) were found in callosal regions, with highest FA values in regions projecting to higher-association areas of posterior cortical (including parietal, temporal and occipital cortices) and prefrontal cortical regions (p<0.001). The lowest FA values were seen in regions projecting into motor and sensory cortical areas. Our results indicate chimpanzees display similar topography of the CC as humans, in terms of distribution of callosal projections and microstructure of fibers as determined by anisotropy measures.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Morphometric Assessment of Human Corpus Callosum on Cadaveric Brain Specimens
    Choudhury, Pradipta Ray
    Choudhury, Purujit
    Baruah, Prabahita
    JOURNAL OF EVOLUTION OF MEDICAL AND DENTAL SCIENCES-JEMDS, 2020, 9 (07): : 388 - 392
  • [22] Age and sex effects on corpus callosum morphology across the lifespan
    Prendergast, Daniel M.
    Ardekani, Babak
    Ikuta, Toshikazu
    John, Majnu
    Peters, Bart
    DeRosse, Pamela
    Wellington, Robin
    Malhotra, Anil K.
    Szeszko, Philip R.
    HUMAN BRAIN MAPPING, 2015, 36 (07) : 2691 - 2702
  • [23] Biometry of the Corpus Callosum in Children: MR Imaging Reference Data
    Garel, C.
    Cont, I.
    Alberti, C.
    Josserand, E.
    Moutard, M. L.
    le Pointe, H. Ducou
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2011, 32 (08) : 1436 - 1443
  • [24] Handedness and the Corpus Callosum: A Review and Further Analyses of Discordant Twins
    Cowell, Patricia
    Gurd, Jennifer
    NEUROSCIENCE, 2018, 388 : 57 - 68
  • [25] Biometry reference range of the corpus callosum in neonates An observational study
    Gao, Yanyan
    Yan, Kai
    Yang, Lin
    Cheng, Guoqiang
    Zhou, Wenhao
    MEDICINE, 2018, 97 (24)
  • [26] Abnormalities of the corpus callosum in non-psychotic high-risk offspring of schizophrenia patients
    Francis, Alan N.
    Bhojraj, Tejas S.
    Prasad, Konasale M.
    Kulkarni, Shreedhar
    Montrose, Debra M.
    Eack, Shaun M.
    Keshavan, Matcheri S.
    PSYCHIATRY RESEARCH-NEUROIMAGING, 2011, 191 (01) : 9 - 15
  • [27] Assessment of the corpus callosum size in male individuals with high intelligence quotient (members of Mensa International)
    Urbanik, Andrzej
    Guz, Wieslaw
    Golebiowski, Marek
    Szurowska, Edyta
    Majos, Agata
    Sasiadek, Marek
    Stajgis, Marek
    Ostrogorska, Monika
    RADIOLOGIE, 2023, 63 : 49 - 54
  • [28] PUBERTY IN THE CORPUS CALLOSUM
    Chavarria, M. C.
    Sanchez, F. J.
    Chou, Y. -Y.
    Thompson, P. M.
    Luders, E.
    NEUROSCIENCE, 2014, 265 : 1 - 8
  • [29] High-resolution imaging of distinct human corpus callosum microstructure and topography of structural connectivity to cortices at high field
    Lee, Byeong-Yeul
    Zhu, Xiao-Hong
    Li, Xiufeng
    Chen, Wei
    BRAIN STRUCTURE & FUNCTION, 2019, 224 (02) : 949 - 960
  • [30] Developmental Changes in the Corpus Callosum from Infancy to Early Adulthood: A Structural Magnetic Resonance Imaging Study
    Tanaka-Arakawa, Megumi M.
    Matsui, Mie
    Tanaka, Chiaki
    Uematsu, Akiko
    Uda, Satoshi
    Miura, Kayoko
    Sakai, Tomoko
    Noguchi, Kyo
    PLOS ONE, 2015, 10 (03):