A NOTE ON SHORT MEMORY PRINCIPLE OF FRACTIONAL CALCULUS

被引:73
|
作者
Wei, Yiheng [1 ]
Chen, Yuquan [1 ]
Cheng, Songsong [1 ]
Wang, Yong [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Vibrat Control & Vehicle Control VCVC Lab, 443 Huang Shan Rd, Hefei 230027, Anhui, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
fractional calculus; short memory principle; long memory characteristic; series representation; NONLINEAR-SYSTEMS; LYAPUNOV FUNCTIONS; ORDER SYSTEMS; MODEL;
D O I
10.1515/fca-2017-0073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, from the classical short memory principle under Grunwald-Letnikov definition, several novel short memory principles are presented and investigated. On one hand, the classical principle is extended to Riemann-Liouville and Caputo cases. On the other hand, a special kind of principles are formulated by introducing a discrete argument instead of the continuous time, resulting in principles with fixed memory length or fixed memory step. Apart from these, several interesting properties of the proposed principles are revealed profoundly.
引用
收藏
页码:1382 / 1404
页数:23
相关论文
共 50 条
  • [41] FRACTIONAL CALCULUS AND SINC METHODS
    Baumann, Gerd
    Stenger, Frank
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (04) : 568 - 622
  • [42] FRACTIONAL CALCULUS IN NEURONAL ELECTROMECHANICS
    Drapaca, Corina S.
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2017, 12 (01) : 35 - 55
  • [43] Fractional calculus and analytic functions
    Kalia, RN
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1996, 4 (1-2) : 203 - 210
  • [44] On Tempered and Substantial Fractional Calculus
    Cao, Jianxiong
    Li, Changpin
    Chen, YangQuan
    2014 IEEE/ASME 10TH INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS (MESA 2014), 2014,
  • [45] On New Applications of Fractional Calculus
    Jain, Shilpi
    Agarwal, Praveen
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (03): : 113 - 118
  • [46] On Inverse Kinematics with Fractional Calculus
    Babiarz, Artur
    Grzejszczak, Tomasz
    Legowski, Adrian
    Niezabitowski, Michal
    2016 ASIA-PACIFIC CONFERENCE ON INTELLIGENT ROBOT SYSTEMS (ACIRS 2016), 2016, : 127 - 131
  • [47] Special polynomials and fractional calculus
    Dattoli, G
    Ricci, PE
    Cesarano, C
    Vázquez, L
    MATHEMATICAL AND COMPUTER MODELLING, 2003, 37 (7-8) : 729 - 733
  • [48] Recent history of fractional calculus
    Machado, J. Tenreiro
    Kiryakova, Virginia
    Mainardi, Francesco
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) : 1140 - 1153
  • [49] General Fractional Vector Calculus
    Tarasov, Vasily E.
    MATHEMATICS, 2021, 9 (21)
  • [50] Fractional calculus and Sinc methods
    Gerd Baumann
    Frank Stenger
    Fractional Calculus and Applied Analysis, 2011, 14 : 568 - 622