Automatic Finding Trapezoidal Membership Functions in Mining Fuzzy Association Rules Based on Learning Automata

被引:13
|
作者
Anari, Z. [1 ]
Hatamlou, A. [2 ]
Anari, B. [3 ]
机构
[1] Payam Noor Univ PNU, Dept Comp Engn & Informat Technol, Tehran, Iran
[2] Islamic Azad Univ, Dept Comp Engn, Khoy Branch, Khoy, Iran
[3] Islamic Azad Univ, Dept Comp Engn, Shabestar Branch, Shabestar, Iran
来源
INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE | 2022年 / 7卷 / 04期
关键词
Continuous Action-set Learning Automata (CALA); Data Mining; Fuzzy Association Rules; Learning Automata; Trapezoidal Membership Function; WEB-USAGE; ALGORITHM; OPTIMIZATION; REPRESENTATION;
D O I
10.9781/ijimai.2022.01.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Association rule mining is an important data mining technique used for discovering relationships among all data items. Membership functions have a significant impact on the outcome of the mining association rules. An important challenge in fuzzy association rule mining is finding an appropriate membership functions, which is an optimization issue. In the most relevant studies of fuzzy association rule mining, only triangle membership functions are considered. This study, as the first attempt, used a team of continuous action-set learning automata (CALA) to find both the appropriate number and positions of trapezoidal membership functions (TMFs). The spreads and centers of the TMFs were taken into account as parameters for the research space and a new approach for the establishment of a CALA team to optimize these parameters was introduced. Additionally, to increase the convergence speed of the proposed approach and remove bad shapes of membership functions, a new heuristic approach has been proposed. Experiments on two real data sets showed that the proposed algorithm improves the efficiency of the extracted rules by finding optimized membership functions.
引用
收藏
页码:27 / 43
页数:17
相关论文
共 50 条
  • [21] Fuzzy Association Rules Mining Using Spark
    Fernandez-Bassso, Carlos
    Dolores Ruiz, M.
    Martin-Bautista, Maria J.
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: THEORY AND FOUNDATIONS, PT II, 2018, 854 : 15 - 25
  • [22] Fuzzy Association Rules Mining Algorithm Based on Equivalence Redundancy of Items
    Watanabe, Toshihiko
    Fujioka, Ryosuke
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 1960 - 1965
  • [23] Mining fuzzy association rules with weighted items
    Joyce, SY
    Tsang, E
    Yeung, D
    Shi, DM
    SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 1906 - 1911
  • [24] Parallel algorithm for mining fuzzy association rules
    Xu, BW
    Lu, JJ
    Zhang, YZ
    Xu, L
    Chen, HW
    Yang, HJ
    2003 INTERNATIONAL CONFERENCE ON CYBERWORLDS, PROCEEDINGS, 2003, : 288 - 293
  • [25] Mining fuzzy association rules from uncertain data
    Weng, Cheng-Hsiung
    Chen, Yen-Liang
    KNOWLEDGE AND INFORMATION SYSTEMS, 2010, 23 (02) : 129 - 152
  • [26] Mining fuzzy association rules from uncertain data
    Cheng-Hsiung Weng
    Yen-Liang Chen
    Knowledge and Information Systems, 2010, 23 : 129 - 152
  • [27] Fuzzy Association Rules Mining Algorithm Based on Output Specification and Redundancy of Rules
    Watanabe, Toshihiko
    2011 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2011, : 283 - 289
  • [28] Mining fuzzy association rules using a memetic algorithm based on structure representation
    Ting, Chuan-Kang
    Liaw, Rung-Tzuo
    Wang, Ting-Chen
    Hong, Tzung-Pei
    MEMETIC COMPUTING, 2018, 10 (01) : 15 - 28
  • [29] Fuzzy Decision Tree Induction Approach for Mining Fuzzy Association Rules
    Intan, Rolly
    Yuliana, Oviliani Yenty
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2009, 5864 : 720 - 728
  • [30] An algorithm for mining fuzzy association rules
    Sheibani, Reza
    Ebrahimzadeh, Amir
    IMECS 2008: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2008, : 486 - 490