Mapping RDF Databases to Property Graph Databases

被引:25
|
作者
Angles, Renzo [1 ]
Thakkar, Harsh [2 ,4 ]
Tomaszuk, Dominik [3 ]
机构
[1] Univ Talca, Fac Engn, Dept Comp Sci, Curico 3340000, Chile
[2] OSTHUS GmbH, D-52068 Aachen, Germany
[3] Univ Bialystok, Inst Informat, PL-15245 Bialystok, Poland
[4] Univ Bonn, Informat Dept 3, D-53115 Bonn, Germany
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Database interoperability; direct mapping; RDF; property graph;
D O I
10.1109/ACCESS.2020.2993117
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
RDF triplestores and property graph databases are two approaches for data management which are based on modeling, storing and querying graph-like data. In spite of such common principle, they present special features that complicate the task of database interoperability. While there exist some methods to transform RDF graphs into property graphs, and vice versa, they lack compatibility and a solid formal foundation. This paper presents three direct mappings (schema-dependent and schema-independent) for transforming an RDF database into a property graph database, including data and schema. We show that two of the proposed mappings satisfy the properties of semantics preservation and information preservation. The existence of both mappings allows us to conclude that the property graph data model subsumes the information capacity of the RDF data model.
引用
收藏
页码:86091 / 86110
页数:20
相关论文
共 50 条
  • [21] Graph databases in systems biology: a systematic review
    Mazein, Ilya
    Rougny, Adrien
    Mazein, Alexander
    Henkel, Ron
    Guetebier, Lea
    Michaelis, Lea
    Ostaszewski, Marek
    Schneider, Reinhard
    Satagopam, Venkata
    Jensen, Lars Juhl
    Waltemath, Dagmar
    Wodke, Judith A. H.
    Balaur, Irina
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [22] Nautilus: Implementation of an Evolution Approach for Graph Databases
    Hausler, Dominique
    Klettke, Meike
    ACM/IEEE 27TH INTERNATIONAL CONFERENCE ON MODEL DRIVEN ENGINEERING LANGUAGES AND SYSTEMS: COMPANION PROCEEDINGS, MODELS 2024, 2024, : 11 - 15
  • [23] Foundations of Modern Query Languages for Graph Databases
    Angles, Renzo
    Arenas, Marcelo
    Barcelo, Pablo
    Hogan, Aidan
    Reutter, Juan
    Vrgoc, Domagoj
    ACM COMPUTING SURVEYS, 2017, 50 (05)
  • [24] Building self-clustering RDF databases using Tunable-LSH
    Aluc, Guenes
    Ozsu, M. Tamer
    Daudjee, Khuzaima
    VLDB JOURNAL, 2019, 28 (02) : 173 - 195
  • [25] SPANG: a SPARQL client supporting generation and reuse of queries for distributed RDF databases
    Chiba, Hirokazu
    Uchiyama, Ikuo
    BMC BIOINFORMATICS, 2017, 18
  • [26] SPANG: a SPARQL client supporting generation and reuse of queries for distributed RDF databases
    Hirokazu Chiba
    Ikuo Uchiyama
    BMC Bioinformatics, 18
  • [27] Building self-clustering RDF databases using Tunable-LSH
    Güneş Aluç
    M. Tamer Özsu
    Khuzaima Daudjee
    The VLDB Journal, 2019, 28 : 173 - 195
  • [28] Enabling Multi-process Discovery on Graph Databases
    Eldin, Ali Nour
    Assy, Nour
    Kobeissi, Meriana
    Baudot, Jonathan
    Gaaloul, Walid
    COOPERATIVE INFORMATION SYSTEMS (COOPIS 2022), 2022, 13591 : 112 - 130
  • [29] R2LD: Schema-based Graph Mapping of relational databases to Linked Open Data for multimedia resources data
    Zhanfang Zhao
    SungKook Han
    JuRi Kim
    Multimedia Tools and Applications, 2019, 78 : 28835 - 28851
  • [30] R2LD: Schema-based Graph Mapping of relational databases to Linked Open Data for multimedia resources data
    Zhao, Zhanfang
    Han, SungKook
    Kim, JuRi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (20) : 28835 - 28851