Deep learning based automatic modulation recognition: Models, datasets, and challenges

被引:63
|
作者
Zhang, Fuxin [1 ]
Luo, Chunbo [1 ,2 ]
Xu, Jialang [1 ]
Luo, Yang [1 ]
Zheng, Fu-Chun [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu, Peoples R China
[2] Univ Exeter, Dept Comp Sci, Exeter EX4 4RN, England
[3] Harbin Inst Technol Shenzhen, Sch Elect & Informat Engn, Shenzhen, Peoples R China
基金
国家重点研发计划;
关键词
Automatic modulation recognition; Deep learning; Neural networks; Modulation; CONVOLUTIONAL NEURAL-NETWORK; CLASSIFICATION METHOD; BLIND ESTIMATION; MIMO CHANNELS; FRAMEWORK; FUSION;
D O I
10.1016/j.dsp.2022.103650
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatic modulation recognition (AMR) detects the modulation scheme of the received signals for further signal processing without needing prior information, and provides the essential function when such information is missing. Recent breakthroughs in deep learning (DL) have laid the foundation for developing high-performance DL-AMR approaches for communications systems. Comparing with traditional modulation detection methods, DL-AMR approaches have achieved promising performance including high recognition accuracy and low false alarms due to the strong feature extraction and classification abilities of deep neural networks. Despite the promising potential, DL-AMR approaches also bring concerns to complexity and explainability, which affect the practical deployment in wireless communications systems. This paper aims to present a review of the current DL-AMR research, with a focus on appropriate DL models and benchmark datasets. We further provide comprehensive experiments to compare the state of the art models for single-input-single-output (SISO) systems from both accuracy and complexity perspectives, and propose to apply DL-AMR in the new multiple-input-multiple-output (MIMO) scenario with precoding. Finally, existing challenges and possible future research directions are discussed. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Automatic modulation recognition using CNN deep learning models
    Saeed Mohsen
    Anas M. Ali
    Ahmed Emam
    Multimedia Tools and Applications, 2024, 83 : 7035 - 7056
  • [2] Automatic modulation recognition using CNN deep learning models
    Mohsen, Saeed
    Ali, Anas M.
    Emam, Ahmed
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 7035 - 7056
  • [3] A Lightweight Automatic Modulation Recognition Algorithm Based on Deep Learning
    Yi, Dong
    Wu, Di
    Hu, Tao
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2023, E106-B (04) : 367 - 373
  • [4] Automatic Modulation Recognition with Deep Learning Algorithms
    Camlibel, Aysenur
    Karakaya, Bahattin
    Tanc, Yesim Hekim
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [5] Deep Learning Aided Method for Automatic Modulation Recognition
    Yang, Cheng
    He, Zhimin
    Peng, Yang
    Wang, Yu
    Yang, Jie
    IEEE ACCESS, 2019, 7 : 109063 - 109068
  • [6] Deep Transfer Learning method for Automatic Modulation Recognition
    Zeng, Wenlong
    Sheng, Hanmin
    Xu, Xintao
    Wang, Xi
    2024 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC 2024, 2024,
  • [7] Automatic Modulation Recognition using Deep Learning Architectures
    Zhang, Meng
    Zeng, Yuan
    Han, Zidong
    Gong, Yi
    2018 IEEE 19TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2018, : 281 - 285
  • [8] Deep Learning-based Automatic Modulation Recognition Algorithm in Internet of Things
    Wang, Yu
    Gui, Guan
    Huang, Hao
    Wang, Jie
    Yin, Yue
    Zhou, Tian
    Zhao, Yu
    Sheng, Hong
    Zhu, Xiaomei
    PROCEEDINGS OF 2019 IEEE 2ND INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION AND COMMUNICATION TECHNOLOGY (ICEICT 2019), 2019, : 576 - 579
  • [9] Deep Learning-Based Automatic Modulation Recognition in OTFS and OFDM systems
    Zhou, Jinggan
    Liao, Xuewen
    Gao, Zhenzhen
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [10] Plant disease recognition datasets in the age of deep learning: challenges and opportunities
    Xu, Mingle
    Park, Ji-Eun
    Lee, Jaehwan
    Yang, Jucheng
    Yoon, Sook
    FRONTIERS IN PLANT SCIENCE, 2024, 15