Output Feedback Control of the Kuramoto-Sivashinsky Equation

被引:0
|
作者
al Jamal, Rasha [1 ]
Morris, Kirsten [2 ]
机构
[1] Air Canada, Operat Excellence, Brampton, ON, Canada
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON, Canada
来源
2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2015年
关键词
BOUNDARY CONTROL; NONLINEAR STABILITY; STABILIZATION; SYSTEMS; PDES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Kuramoto-Sivashinsky equation is a nonlinear partial differential equation that models reaction-diffusion systems. The stability of the equilibria depends on the value of a positive parameter; the set of all constant equilibria are unstable when the instability parameter is less than 1. Stabilization of the Kuramoto-Sivashinsky equation using scalar output-feedback control is considered in this paper. This is done by stabilizing the corresponding linearized system. A finite-dimensional controller is then designed to stabilize the system. Frechet differentiability of the semigroup generated by the closed-loop system plays an important role in proving that this approach yields a locally stable equilibrium. The approach is illustrated with a numerical example.
引用
收藏
页码:567 / 571
页数:5
相关论文
共 50 条
  • [31] GLOBAL EXACT CONTROLLABILITY TO THE TRAJECTORIES OF THE KURAMOTO-SIVASHINSKY EQUATION
    Gao, Peng
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (01): : 181 - 191
  • [32] Sampled-Data Control of 2-D Kuramoto-Sivashinsky Equation
    Kang, Wen
    Fridman, Emilia
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (03) : 1314 - 1326
  • [33] A higher-order finite element approach to the Kuramoto-Sivashinsky equation
    Anders, Denis
    Dittmann, Maik
    Weinberg, Kerstin
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2012, 92 (08): : 599 - 607
  • [34] Organization of spatially periodic solutions of the steady Kuramoto-Sivashinsky equation
    Dong, Chengwei
    Lan, Yueheng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (06) : 2140 - 2153
  • [35] AVERAGING PRINCIPLE FOR STOCHASTIC KURAMOTO-SIVASHINSKY EQUATION WITH A FAST OSCILLATION
    Gao, Peng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (11) : 5649 - 5684
  • [36] Stackelberg-Nash exact controllability for the Kuramoto-Sivashinsky equation
    Carreno, N.
    Santos, M. C.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (09) : 6068 - 6108
  • [37] An improvised extrapolated collocation algorithm for solving Kuramoto-Sivashinsky equation
    Shallu
    Kukreja, Vijay Kumar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (03) : 1451 - 1467
  • [38] Switching Control of 2-D Kuramoto-Sivashinsky Equation under Averaged Measurements
    Zhang, Jing
    Kang, Wen
    2023 IEEE 6TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS, 2023,
  • [39] Data-based stochastic model reduction for the Kuramoto-Sivashinsky equation
    Lu, Fei
    Lin, Kevin K.
    Chorin, Alexandre J.
    PHYSICA D-NONLINEAR PHENOMENA, 2017, 340 : 46 - 57
  • [40] Stability of periodic Kuramoto-Sivashinsky waves
    Barker, Blake
    Johnson, Mathew A.
    Noble, Pascal
    Rodrigues, L. Miguel
    Zumbrun, Kevin
    APPLIED MATHEMATICS LETTERS, 2012, 25 (05) : 824 - 829