Modifying the Interface between the Solvated Ionic Liquid Electrolyte and Positive Electrode to Boost Lithium-Ion Battery Performance

被引:2
作者
Deng, Jun [1 ]
Nishio, Kazunori [1 ]
Ichinokura, Satoru [2 ]
Watanabe, Yuki [1 ]
Edamura, Kurei [1 ]
Nakayama, Ryo [1 ]
Shimizu, Ryota [1 ]
Hirahara, Toru [2 ]
Hitosugi, Taro [1 ,2 ]
机构
[1] Tokyo Inst Technol, Sch Mat & Chem Technol, Tokyo 1528552, Japan
[2] Univ Tokyo, Dept Chem, Tokyo 1130033, Japan
关键词
lithium-ion battery; LiCoO2 epitaxial thin film; LiG4][TFSA; interface resistance; Li3PO4 buffer layer; CHALLENGES;
D O I
10.1021/acsaem.2c01533
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ionic liquids are promising liquid electrolytes because of their wide potential window (high electrochemical stability) and high Li-ion conductivity. However, high electrical resistance at the interface between the electrolyte and electrode hinders their practical application in Li-ion batteries. Here, we report the low interfacial resistance between a solvated ionic liquid, tetraglyme-lithium bis-(trifluoromethanesulfonyl)amide ([LiG4][TFSA]), and positive elec-trode LiCoO2. We demonstrate stable cycling in a battery using a Li3PO4 buffer layer inserted at the interface of [LiG4][TFSA] and a positive electrode LiCoO2(001). Without inserting the buffer layer, the interface resistance drastically increases with repeated charge-discharge cycles, originating from the formation of a solid-electrolyte interphase (SEI) on the LiCoO2(001) surface; the interface resistance was 2.0 x 104 omega cm2 after the 10th cycle. In contrast, the introduction of Li3PO4 significantly improves the charge and discharge cyclability, suppresses SEI growth, and lowers the [LiG4][TFSA]-Li3PO4 interface resistance to 4.5 x 102 omega cm2. These results highlight the importance of modifying the interface between the ionic liquid electrolyte and the positive electrode to boost battery performance.
引用
收藏
页码:10891 / 10896
页数:6
相关论文
共 20 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]  
Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/NMAT2448, 10.1038/nmat2448]
[3]   Negligible "Negative Space-Charge Layer Effects" at Oxide-Electrolyte/Electrode Interfaces of Thin-Film Batteries [J].
Haruta, Masakazu ;
Shiraki, Susumu ;
Suzuki, Tohru ;
Kumatani, Akichika ;
Ohsawa, Takeo ;
Takagi, Yoshitaka ;
Shimizu, Ryota ;
Hitosugi, Taro .
NANO LETTERS, 2015, 15 (03) :1498-1502
[4]   Effects of Anisotropy in Rutile TiO2 on the Performance of Solid-State Lithium Batteries [J].
Imazeki, Daisuke ;
van Gils, Christopher Cornelis ;
Nishio, Kazunori ;
Shimizu, Ryota ;
Hitosugi, Taro .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (09) :8338-8343
[5]   Extremely Low Resistance of Li3PO4 Electrolyte/Li(Ni0.5Mn1.5)O4 Electrode Interfaces [J].
Kawasoko, Hideyuki ;
Shiraki, Susumu ;
Suzuki, Toru ;
Shimizu, Ryota ;
Hitosugi, Taro .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (32) :27498-27502
[6]   Drastic Reduction of the Solid Electrolyte-Electrode Interface Resistance via Annealing in Battery Form [J].
Kobayashi, Shigeru ;
Arguelles, Elvis F. ;
Shirasawa, Tetsuroh ;
Kasamatsu, Shusuke ;
Shimizu, Koji ;
Nishio, Kazunori ;
Watanabe, Yuki ;
Kubota, Yusuke ;
Shimizu, Ryota ;
Watanabe, Satoshi ;
Hitosugi, Taro .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (02) :2703-2710
[7]   Current status and challenges for automotive battery production technologies [J].
Kwade, Arno ;
Haselrieder, Wolfgang ;
Leithoff, Ruben ;
Modlinger, Armin ;
Dietrich, Franz ;
Droeder, Klaus .
NATURE ENERGY, 2018, 3 (04) :290-300
[8]   Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies [J].
Lewandowski, Andrzej ;
Swiderska-Mocek, Agnieszka .
JOURNAL OF POWER SOURCES, 2009, 194 (02) :601-609
[9]   Cathode-Electrolyte Interphase in a LiTFSI/Tetraglyme Electrolyte Promoting the Cyclability of V2O5 [J].
Liu, Xu ;
Zarrabeitia, Maider ;
Qin, Bingsheng ;
Elia, Giuseppe Antonio ;
Passerini, Stefano .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (49) :54782-54790
[10]  
MacFarlane D. R., 2009, ENERG ENVIRON SCI, V2