Freestanding 1D Hierarchical Porous Fe-N-Doped Carbon Nanofibers as Efficient Oxygen Reduction Catalysts for Zn-Air Batteries

被引:28
|
作者
Wu, Mengchen [1 ,2 ]
Li, Congling [1 ,2 ]
Liu, Rui [1 ,2 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Key Lab Adv Civil Engn Mat, Minist Educ, Shanghai 201804, Peoples R China
[2] Tongji Univ, Inst Adv Study, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
electrospinning; Fe-N; porous carbon materials; zeolitic imidazolate framework; Zn-air batteries; METAL-ORGANIC FRAMEWORK; NANOPARTICLE-EMBEDDED CARBON; NANOPOROUS CARBON; MESOPOROUS CARBON; BIFUNCTIONAL CATALYSTS; ELECTROCATALYSTS; CO; COORDINATION; PERFORMANCE; CHALLENGES;
D O I
10.1002/ente.201800790
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
High-performance nonprecious metal-doped 1D carbon catalysts for oxygen reduction reactions (ORR) are viable candidates in lieu of platinum-based catalysts. Hierarchical porous Fe-N-doped carbon nanofibers (Fe-NHCFs) are fabricated via carbonization of MOF nanofibers with a specific surface area of 294 m(2) g(-1) and inherent hierarchical porosity. Benefiting from the Fe-N doping-induced active sites, unique hierarchical porosity, and 1D honeycomb conductive networks to facilitate electron transfer, the freestanding Fe-NHCFs confer a current density (5.2 mA cm(-2)) at 0.70 V (vs reversible hydrogen electrode), comparable with the commercial 20 wt% Pt/C (5 mA cm(-2)) in alkaline medium. Especially, the parallel characteristics with Pt/C is acquired in an assembled Zn-air battery, which deliver a discharge current density of 90 mA cm(-2) and an output peak power density of 61 mW cm(-2). This simple synthesis strategy would leverage a new geometry for tailored utility of active sites for ORR in a 1D carbon framework.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] CrN supported by carbon nanosheets as efficient catalysts toward oxygen reduction reaction and Zn-air batteries
    Zhang, Ya-Ting
    Zhang, Fan
    Lu, Zhe
    Luo, Jun-Ming
    Feng, Su-Yang
    Wang, Qi
    Chen, Hui
    Wu, Hao-Ming
    Miao, Zheng-Pei
    Chi, Bin
    Yu, Neng
    You, Cheng-Hang
    Li, Jing
    Tian, Xin-Long
    RARE METALS, 2024, 43 (10) : 4973 - 4981
  • [32] Highly efficient and active Co-N-C catalysts for oxygen reduction and Zn-air batteries
    Lei, Cong
    Yang, Rongzhong
    Zhao, Jianan
    Tang, Wenbin
    Miao, Fadong
    Huang, Qinghong
    Wu, Yuping
    FRONTIERS IN ENERGY, 2024, 18 (04) : 436 - 446
  • [33] Integration of Fe2N Nanoparticles and FeCo Alloys into N-Doped Carbon Nanotubes as Efficient Oxygen Catalysts for Rechargeable Zn-air Batteries
    Huang, Zexing
    Wang, Ying
    Xiao, Yuting
    Zhou, Xuejiao
    Zhang, Mingyi
    Yu, Peng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (26): : 9727 - 9736
  • [34] Pyridinic nitrogen exclusively doped carbon materials as efficient oxygen reduction electrocatalysts for Zn-air batteries
    Lv, Qing
    Wang, Ning
    Si, Wenyan
    Hou, Zhufeng
    Li, Xiaodong
    Wang, Xin
    Zhao, Fuhua
    Yang, Ze
    Zhang, Yanliang
    Huang, Changshui
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 261 (261)
  • [35] Rational design of N-doped carbon nanobox-supported Fe/Fe2N/Fe3C nanoparticles as efficient oxygen reduction catalysts for Zn-air batteries
    Cao, Lei
    Li, Zhen-huan
    Gu, Yu
    Li, Dao-hao
    Su, Kun-mei
    Yang, Dong-jiang
    Cheng, Bo-wen
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (22) : 11340 - 11347
  • [36] Defect-enriched hollow porous Co-N-doped carbon for oxygen reduction reaction and Zn-Air batteries
    Zhu, Yu
    Zhang, Zeyi
    Lei, Zhao
    Tan, Yangyang
    Wu, Wei
    Mu, Shichun
    Cheng, Niancai
    CARBON, 2020, 167 (167) : 188 - 195
  • [37] Hierarchical Core-Shell Co2N/CoP Embedded in N, P-doped Carbon Nanotubes as Efficient Oxygen Reduction Reaction Catalysts for Zn-air Batteries
    Yao, Chongchao
    Li, Jiaxin
    Zhang, Zhihao
    Gou, Chunli
    Zhang, Zhongshen
    Pan, Gang
    Zhang, Jing
    SMALL, 2022, 18 (20)
  • [38] Organic lactam induces the secondary recrystallization of zeolite β to form hierarchical porous carbon nanocages for efficient oxygen reduction and Zn-air batteries
    Liu, Hao
    Yang, Guangwu
    Duan, Fuqiang
    Qiu, Xiaoli
    Ren, Guangrun
    Zhang, Tingting
    Yu, Jinshi
    Chen, Yanli
    CARBON, 2025, 234
  • [39] Synergistic dual sites of Zn-Mg on hierarchical porous carbon as an advanced oxygen reduction electrocatalyst for Zn-air batteries
    Liu, Mincong
    Zhang, Jing
    Peng, Yan
    Guan, Shiyou
    DALTON TRANSACTIONS, 2024, 53 (21) : 8940 - 8947
  • [40] Mn-N-P doped carbon spheres as an efficient oxygen reduction catalyst for high performance Zn-Air batteries
    Jiajie Li
    Shanbao Zou
    Jinzhen Huang
    Xiaoqian Wu
    Yue Lu
    Xundao Liu
    Bo Song
    Dehua Dong
    ChineseChemicalLetters, 2023, 34 (01) : 207 - 211