Freestanding 1D Hierarchical Porous Fe-N-Doped Carbon Nanofibers as Efficient Oxygen Reduction Catalysts for Zn-Air Batteries

被引:28
|
作者
Wu, Mengchen [1 ,2 ]
Li, Congling [1 ,2 ]
Liu, Rui [1 ,2 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Key Lab Adv Civil Engn Mat, Minist Educ, Shanghai 201804, Peoples R China
[2] Tongji Univ, Inst Adv Study, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
electrospinning; Fe-N; porous carbon materials; zeolitic imidazolate framework; Zn-air batteries; METAL-ORGANIC FRAMEWORK; NANOPARTICLE-EMBEDDED CARBON; NANOPOROUS CARBON; MESOPOROUS CARBON; BIFUNCTIONAL CATALYSTS; ELECTROCATALYSTS; CO; COORDINATION; PERFORMANCE; CHALLENGES;
D O I
10.1002/ente.201800790
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
High-performance nonprecious metal-doped 1D carbon catalysts for oxygen reduction reactions (ORR) are viable candidates in lieu of platinum-based catalysts. Hierarchical porous Fe-N-doped carbon nanofibers (Fe-NHCFs) are fabricated via carbonization of MOF nanofibers with a specific surface area of 294 m(2) g(-1) and inherent hierarchical porosity. Benefiting from the Fe-N doping-induced active sites, unique hierarchical porosity, and 1D honeycomb conductive networks to facilitate electron transfer, the freestanding Fe-NHCFs confer a current density (5.2 mA cm(-2)) at 0.70 V (vs reversible hydrogen electrode), comparable with the commercial 20 wt% Pt/C (5 mA cm(-2)) in alkaline medium. Especially, the parallel characteristics with Pt/C is acquired in an assembled Zn-air battery, which deliver a discharge current density of 90 mA cm(-2) and an output peak power density of 61 mW cm(-2). This simple synthesis strategy would leverage a new geometry for tailored utility of active sites for ORR in a 1D carbon framework.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Perovskite nanoparticles@N-doped carbon nanofibers as robust and efficient oxygen electrocatalysts for Zn-air batteries
    Lin, Haoqing
    Xie, Jiao
    Zhang, Zhenbao
    Wang, Shaofeng
    Chen, Dengjie
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 581 : 374 - 384
  • [12] Hierarchically porous Fe-N-doped carbon nanotubes as efficient electrocatalyst for oxygen reduction
    Li, Jin-Cheng
    Hou, Peng-Xiang
    Shi, Chao
    Zhao, Shi Yong
    Tang, Dai-Ming
    Cheng, Min
    Liu, Chang
    Cheng, Hui-Ming
    CARBON, 2016, 109 : 632 - 639
  • [13] FeS encapsulated hierarchical porous S, N-dual-doped carbon for oxygen reduction reaction facilitation in Zn-air batteries
    Xu, Hao
    Wang, Dan
    Yang, Peixia
    Liu, Anmin
    Li, Ruopeng
    Xiao, Lihui
    Zhang, Jinqiu
    Qu, Zhenshen
    An, Maozhong
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (10) : 2695 - 2703
  • [14] Fe-N-doped hierarchical mesoporous carbon nanomaterials as efficient catalysts for oxygen reduction in both acidic and alkaline media
    Dun, Rongmin
    Hao, Menggeng
    Su, Yumiao
    Li, Wenmu
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (20) : 12518 - 12525
  • [15] Co/N-Doped hierarchical porous carbon as an efficient oxygen electrocatalyst for rechargeable Zn-air battery
    Zhou, Wenshu
    Liu, Yanyan
    Liu, Huan
    Wu, Dichao
    Zhang, Gaoyue
    Jiang, Jianchun
    RSC ADVANCES, 2021, 11 (26) : 15753 - 15761
  • [16] FeCo/N-co-doped 3D carbon nanofibers as efficient bifunctional oxygen electrocatalyst for Zn-air batteries
    Wang, Jiangbo
    Zhang, Yanan
    Guo, Xue
    Liao, Shiqin
    Lv, Pengfei
    Wei, Qufu
    NANOSCALE, 2023, 15 (02) : 625 - 630
  • [17] A single-atom iron catalyst on hierarchical N-doped carbon for highly efficient oxygen reduction in Zn-air batteries
    Gu, Jun-Fei
    Wang, Jichao
    Wu, Qing
    Wang, Caixia
    Verpoort, Francis
    Chaemchuen, Somboon
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (27) : 16528 - 16536
  • [18] Porous carbon nanosheets for oxygen reduction reaction and Zn-air batteries
    Samad, Shahzeb Ali
    Fang, Ziyu
    Shi, Pengfei
    Zhu, Jinhui
    Lu, Chenbao
    Su, Yuezeng
    Zhuang, Xiaodong
    2D MATERIALS, 2023, 10 (02)
  • [19] Fe3O4-Encapsulating N-doped porous carbon materials as efficient oxygen reduction reaction electrocatalysts for Zn-air batteries
    Li, Longbin
    Li, Yizhe
    Xiao, Yingbo
    Zeng, Rong
    Tang, Xiannong
    Yang, Weizu
    Huang, Jun
    Yuan, Kai
    Chen, Yiwang
    CHEMICAL COMMUNICATIONS, 2019, 55 (52) : 7538 - 7541
  • [20] Fe-N4 engineering of S and N co-doped hierarchical porous carbon-based electrocatalysts for enhanced oxygen reduction in Zn-air batteries
    Gao, Jingxia
    Liu, Sa
    Zhu, Ping
    Zhao, Xinsheng
    Wang, Guoxiang
    DALTON TRANSACTIONS, 2020, 49 (42) : 14847 - 14853