The inhibition of glycogen synthase kinase 3β by a metabotropic glutamate receptor 5 mediated pathway confers neuroprotection to Aβ peptides

被引:35
作者
Liu, F [1 ]
Gong, XH [1 ]
Zhang, GM [1 ]
Marquis, K [1 ]
Reinhart, P [1 ]
Andree, TH [1 ]
机构
[1] Wyeth Neurosci Res, Princeton, NJ 08852 USA
关键词
apoptosis Alzheimer's; Gsk3; beta; mGluR5; phosphorylation; PI3K;
D O I
10.1111/j.1471-4159.2005.03474.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Activation of glycogen synthase kinase 3 beta (Gsk3 beta) has been shown to be a key component in signaling pathways that underlie neurodegeneration and neurodegenerative disease. Conversely, inactivation of Gsk3 beta by phosphoinositide 3-kinase (PI3K)/Akt is an important neuroprotective mechanism. Previous studies have shown that agonist activation of group I metabotropic glutamate receptors (mGluRs) can increase neuronal survival and prevent apoptosis. However, little is known about the signaling pathways that couple mGluR5 to neuroprotection. In this report, we investigated whether activation of the PI3K/Akt/Gsk3 beta pathway, which has been shown to have an important neuroprotective mechanism, is required for mGluR5 activation mediated neuroprotection against beta-amyloid. We found that brief incubations of mouse hippocampal slices with (R,S)-3,5-dihydroxyphenylglycine (DHPG) resulted in increased phosphorylation of Akt and Gsk3 beta. The PI3K inhibitors, LY294002 and wortmannin, blocked the DHPG-induced increased phosphorylation of Akt and Gsk3 beta. Similar results were observed in rat primary hippocampal cultures. Finally, we found that the PI3K inhibitor LY294002 can block (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG) mediated neuroprotection against beta-amyloid. Thus, these findings suggest that mGluR5 can modulate the PI3K/Akt/Gsk3 beta pathway in the hippocampus, and that modulation of this signaling pathway can reverse beta-amyloid-induced neuronal toxicity.
引用
收藏
页码:1363 / 1372
页数:10
相关论文
共 32 条
[1]   β-amyloid-induced apoptosis of cerebellar granule cells and cortical neurons:: exacerbation by selective inhibition of group I metabotropic glutamate receptors [J].
Allen, JW ;
Eldadah, BA ;
Faden, AI .
NEUROPHARMACOLOGY, 1999, 38 (08) :1243-1252
[2]   Selective mGluR5 receptor antagonist or agonist provides neuroprotection in a rat model of focal cerebral ischemia [J].
Bao, WL ;
Williams, AJ ;
Faden, AI ;
Tortella, FC .
BRAIN RESEARCH, 2001, 922 (02) :173-179
[3]   Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3 [J].
Beals, CR ;
Sheridan, CM ;
Turck, CW ;
Gardner, P ;
Crabtree, GR .
SCIENCE, 1997, 275 (5308) :1930-1933
[4]   Glycogen synthase kinase 3: a drug target for CNS therapies [J].
Bhat, RV ;
Haeberlein, SLB ;
Avila, J .
JOURNAL OF NEUROCHEMISTRY, 2004, 89 (06) :1313-1317
[5]   OPTIMIZED SURVIVAL OF HIPPOCAMPAL-NEURONS IN B27-SUPPLEMENTED NEUROBASAL(TM), A NEW SERUM-FREE MEDIUM COMBINATION [J].
BREWER, GJ ;
TORRICELLI, JR ;
EVEGE, EK ;
PRICE, PJ .
JOURNAL OF NEUROSCIENCE RESEARCH, 1993, 35 (05) :567-576
[6]   Viable cultured neurons in ambient carbon dioxide and hibernation storage for a month [J].
Brewer, GJ ;
Price, PJ .
NEUROREPORT, 1996, 7 (09) :1509-1512
[7]   Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway [J].
Brunet, A ;
Datta, SR ;
Greenberg, ME .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (03) :297-305
[8]   Selective blockade of metabotropic glutamate receptor subtype 5 is neuroprotective [J].
Bruno, V ;
Ksiazek, I ;
Battaglia, G ;
Lukic, S ;
Leonhardt, T ;
Sauer, D ;
Gasparini, F ;
Kuhn, R ;
Nicoletti, F ;
Flor, PJ .
NEUROPHARMACOLOGY, 2000, 39 (12) :2223-2230
[9]  
COPANI A, 1995, J NEUROCHEM, V64, P101
[10]   Crystal structure of glycogen synthase kinase 3β:: Structural basis for phosphate-primed substrate specificity and autoinhibition [J].
Dajani, R ;
Fraser, E ;
Roe, SM ;
Young, N ;
Good, V ;
Dale, TC ;
Pearl, LH .
CELL, 2001, 105 (06) :721-732