Methods for topography artifacts compensation in scanning thermal microscopy

被引:27
作者
Martinek, Jan [1 ,3 ]
Klapetek, Petr [1 ,2 ]
Campbell, Anna Charvtova [1 ]
机构
[1] Czech Metrol Inst, Brno 63800, Czech Republic
[2] BUT, CEITEC, Brno 61600, Czech Republic
[3] BUT, Fac Civil Engn, Dept Phys, Brno 60200, Czech Republic
关键词
Scanning thermal microscopy; Artifacts; Neural networks; CONDUCTIVITY;
D O I
10.1016/j.ultramic.2015.04.011
中图分类号
TH742 [显微镜];
学科分类号
摘要
Thermal conductivity contrast images in scanning thermal microscopy (SThM) are often distorted by artifacts related to local sample topography. This is pronounced on samples with sharp topographic features, on rough samples and while using larger probes, for example, Wollaston wire-based probes. The topography artifacts can be so high that they can even obscure local thermal conductivity variations influencing the measured signal. Three methods for numerically estimating and compensating for topographic artifacts are compared in this paper: a simple approach based on local sample geometry at the probe apex vicinity, a neural network analysis and 3D finite element modeling of the probe-sample interaction. A local topography and an estimated probe shape are used as source data for the calculation in all these techniques; the result is a map of false conductivity contrast signals generated only by sample topography. This map can be then used to remove the topography artifacts from measured data or to estimate the uncertainty of conductivity measurements using SThM. The accuracy of the results and the computational demands of the presented methods are discussed. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
引用
收藏
页码:55 / 61
页数:7
相关论文
共 14 条
  • [1] Quantitative dynamic near-field microscopy of thermal conductivity
    Altes, A
    Heiderhoff, R
    Balk, LJ
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2004, 37 (06) : 952 - 963
  • [2] A FULLY AUTOMATED HOT-WALL MULTIPLASMA-MONOCHAMBER REACTOR FOR THIN-FILM DEPOSITION
    CABARROCAS, PRI
    CHEVRIER, JB
    HUC, J
    LLORET, A
    PAREY, JY
    SCHMITT, JPM
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1991, 9 (04): : 2331 - 2341
  • [3] Thermometry and thermal transport in micro/nanoscale solid-state devices and structures
    Cahill, DG
    Goodson, KE
    Majumdar, A
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (02): : 223 - 241
  • [4] Thermal conductivity of SiO2 films by scanning thermal microscopy
    Callard, S
    Tallarida, G
    Borghesi, A
    Zanotti, L
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 1999, 245 : 203 - 209
  • [5] Modelling for the thermal characterization of solid materials by dc scanning thermal microscopy
    David, L.
    Gomes, S.
    Raynaud, M.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (14) : 4337 - 4346
  • [6] Depasse F, 2004, SUPERLATTICE MICROST, V35, P269, DOI 10.1016/j.spmi.2003.01.008
  • [7] Quantitative determination of heat conductivities by scanning thermal microscopy
    Fischer, H
    [J]. THERMOCHIMICA ACTA, 2005, 425 (1-2) : 69 - 74
  • [8] DC scanning thermal microscopy: Characterisation and interpretation of the measurement
    Gomes, S
    Trannoy, N
    Grossel, P
    Depasse, F
    Bainier, C
    Charraut, D
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2001, 40 (11) : 949 - 958
  • [9] Applications of scanning thermal microscopy in the analysis of the geometry of patterned structures
    Klapetek, P
    Ohlídal, I
    Bursík, J
    [J]. SURFACE AND INTERFACE ANALYSIS, 2006, 38 (04) : 383 - 387
  • [10] Gwyddion: an open-source software for SPM data analysis
    Necas, David
    Klapetek, Petr
    [J]. CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2012, 10 (01): : 181 - 188