A Cauchy problem of spatial-weighted reaction diffusion equations

被引:7
作者
Liu, Bingchen [1 ]
Lin, Hongyan [1 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao 266555, Shandong, Peoples R China
关键词
Cauchy problem; Fujita exponent; Spatial-weighted function; BLOW-UP; PARABOLIC EQUATIONS; CRITICAL EXPONENTS;
D O I
10.1016/j.aml.2019.01.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a Cauchy problem of reaction-diffusion equations u(t) = Delta u + b(x)u(alpha)v(p) and v(t) = Delta v + a(x)u(q)v(beta) in R-N x [0, T) with p, q, alpha, beta >= 0. The weighted functions a(x), b(x) are locally Holder-continuous, satisfying that a(x) similar to vertical bar x vertical bar(m) and b(x) similar to vertical bar x vertical bar(n) as vertical bar x vertical bar -> + infinity for m, n >= 0. The complete classification on global and non-global solutions is obtained through determining the Fujita exponent which is affected by m, n, p, q, alpha, beta, N. The results of the paper extend the ones obtained by Escobedo and Herrero (1991) and Li, Sun and Zhang (2017), respectively, to the completely coupled equations. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:128 / 133
页数:6
相关论文
共 15 条
[1]   Time-weighted blow-up profiles in a nonlinear parabolic system with Fujita exponent [J].
Du, Yini ;
Liu, Bingchen .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (05) :1034-1055
[2]   BOUNDEDNESS AND BLOW UP FOR A SEMILINEAR REACTION DIFFUSION SYSTEM [J].
ESCOBEDO, M ;
HERRERO, MA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 89 (01) :176-202
[3]  
Hu B., 2011, LECT NOTES MATH, V1022
[4]   Existence and nonexistence of global solutions for a semilinear reaction-diffusion system [J].
Li, Lin-Lin ;
Sun, Hong-Rui ;
Zhang, Quan-Guo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (01) :97-124
[5]   Asymptotic properties of blow-up solutions in reaction-diffusion equations with nonlocal boundary flux [J].
Liu, Bingchen ;
Dong, Mengzhen ;
Li, Fengjie .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (02)
[6]   The critical exponent of doubly singular parabolic equations [J].
Liu, XF ;
Wang, MX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 257 (01) :170-188
[7]   Existence and nonexistence of global solutions for u(t)=Delta u+a(x)u(p) in R(d) [J].
Pinsky, RG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 133 (01) :152-177
[8]   Critical exponents of quasilinear parabolic equations [J].
Qi, YW ;
Wang, MX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 267 (01) :264-280
[9]   The critical exponents of parabolic equations and blow-up in Rn [J].
Qi, YW .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :123-136
[10]  
Smoller J., 1994, Shock Waves and Reaction-Diffusion Equations