Biological relevance of computationally predicted pathogenicity of noncoding variants

被引:34
作者
Liu, Li [1 ]
Sanderford, Maxwell D. [2 ]
Patel, Ravi [2 ,3 ]
Chandrashekar, Pramod [1 ]
Gibson, Greg [4 ]
Kumar, Sudhir [2 ,3 ]
机构
[1] Arizona State Univ, Biodesign Inst, Coll Hlth Solut, Tempe, AZ USA
[2] Temple Univ, Inst Genom & Evolutionary Med, Philadelphia, PA 19122 USA
[3] Temple Univ, Dept Biol, Philadelphia, PA 19122 USA
[4] Georgia Inst Technol, Sch Biol Sci, Atlanta, GA 30332 USA
关键词
GENOME-WIDE ASSOCIATION; FUNCTIONAL ANNOTATION; SEQUENCE VARIANTS; EXPRESSION; IDENTIFICATION; NUCLEOTIDE; ELEMENTS; CONSERVATION; CONSEQUENCES; INDIVIDUALS;
D O I
10.1038/s41467-018-08270-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Computational prediction of the phenotypic propensities of noncoding single nucleotide variants typically combines annotation of genomic, functional and evolutionary attributes into a single score. Here, we evaluate if the claimed excellent accuracies of these predictions translate into high rates of success in addressing questions important in biological research, such as fine mapping causal variants, distinguishing pathogenic allele(s) at a given position, and prioritizing variants for genetic risk assessment. A significant disconnect is found to exist between the statistical modelling and biological performance of predictive approaches. We discuss fundamental reasons underlying these deficiencies and suggest that future improvements of computational predictions need to address confounding of allelic, positional and regional effects as well as imbalance of the proportion of true positive variants in candidate lists.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Understanding the Pathogenicity of Noncoding Mismatch Repair Gene Promoter Variants in Lynch Syndrome
    Liu, Qing
    Thompson, Bryony A.
    Ward, Robyn L.
    Hesson, Luke B.
    Sloane, Mathew A.
    HUMAN MUTATION, 2016, 37 (05) : 417 - 426
  • [2] A domain damage index to prioritizing the pathogenicity of missense variants
    Chen, Hua-Chang
    Wang, Jing
    Liu, Qi
    Shyr, Yu
    HUMAN MUTATION, 2021, 42 (11) : 1503 - 1517
  • [3] Regulatory Noncoding and Predicted Pathogenic Coding Variants of CCR5 Predispose to Severe COVID-19
    Cantalupo, Sueva
    Lasorsa, Vito Alessandro
    Russo, Roberta
    Andolfo, Immacolata
    D'Alterio, Giuseppe
    Rosato, Barbara Eleni
    Frisso, Giulia
    Abete, Pasquale
    Cassese, Gian Marco
    Servillo, Giuseppe
    Gentile, Ivan
    Piscopo, Carmelo
    Della Monica, Matteo
    Fiorentino, Giuseppe
    Russo, Giuseppe
    Cerino, Pellegrino
    Buonerba, Carlo
    Pierri, Biancamaria
    Zollo, Massimo
    Iolascon, Achille
    Capasso, Mario
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (10)
  • [4] INFERNO: inferring the molecular mechanisms of noncoding genetic variants
    Amlie-Wolf, Alexandre
    Tang, Mitchell
    Mlynarski, Elisabeth E.
    Kuksa, Pavel P.
    Valladares, Otto
    Katanic, Zivadin
    Tsuang, Debby
    Brown, Christopher D.
    Schellenberg, Gerard D.
    Wang, Li-San
    NUCLEIC ACIDS RESEARCH, 2018, 46 (17) : 8740 - 8753
  • [5] Performance evaluation of pathogenicity-computation methods for missense variants
    Li, Jinchen
    Zhao, Tingting
    Zhang, Yi
    Zhang, Kun
    Shi, Leisheng
    Chen, Yun
    Wang, Xingxing
    Sun, Zhongsheng
    NUCLEIC ACIDS RESEARCH, 2018, 46 (15) : 7793 - 7804
  • [6] Relevance of pathogenicity prediction tools in human RYR1 variants of unknown significance
    Hoppe, Kerstin
    Jurkat-Rott, Karin
    Kranepuhl, Stefanie
    Wearing, Scott
    Heiderich, Sebastian
    Merlak, Sonja
    Klingler, Werner
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [7] Genetic variants in noncoding PIWI-interacting RNA and colorectal cancer risk
    Chu, Haiyan
    Xia, Liping
    Qiu, Xiaonan
    Gu, Dongying
    Zhu, Linjun
    Jin, Jing
    Hui, Gaoyun
    Hua, Qiuhan
    Du, Mulong
    Tong, Na
    Chen, Jinfei
    Zhang, Zhengdong
    Wang, Meilin
    CANCER, 2015, 121 (12) : 2044 - 2052
  • [8] Functional relevance for multiple sclerosis-associated genetic variants
    Lin, Xiang
    Deng, Fei-Yan
    Mo, Xing-Bo
    Wu, Long-Fei
    Lei, Shu-Feng
    IMMUNOGENETICS, 2015, 67 (01) : 7 - 14
  • [9] PINES: phenotype-informed tissue weighting improves prediction of pathogenic noncoding variants
    Bodea, Corneliu A.
    Mitchell, Adele A.
    Bloemendal, Alex
    Day-Williams, Aaron G.
    Runz, Heiko
    Sunyaev, Shamil R.
    GENOME BIOLOGY, 2018, 19
  • [10] Improved pathogenicity prediction for rare human missense variants
    Wu, Yingzhou
    Li, Roujia
    Sun, Song
    Weile, Jochen
    Roth, Frederick P.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2021, 108 (10) : 1891 - 1906