Inducing Damage Diagnosis Capabilities in Carbon Fiber Reinforced Polymer Composites by Magnetoelastic Sensor Integration via 3D Printing

被引:6
|
作者
Dimogianopoulos, Dimitrios G. [1 ]
Charitidis, Panagiotis J. [2 ]
Mouzakis, Dionysios E. [3 ]
机构
[1] Univ West Attica, Dept Ind Design & Prod Engn, Athens 12241, Greece
[2] Democritus Univ Thrace, Environm Engn Sch, GR-67100 Xanthi, Greece
[3] Hellen Army Acad, Sect Math & Engn Applicat, Mech Lab, PO Vari PO 16673, Attica, Greece
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 03期
关键词
damage detection; damage assessment; smart sensor; magnetoelastic strip; 3D printing; additive manufacturing; STRAIN SENSORS;
D O I
10.3390/app10031029
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study investigates the possibility of inducing damage diagnosis capabilities in carbon fiber reinforced polymer composite slabs using custom-built integrated sensors and conventional, affordable equipment. The concept utilizes magnetoelastic strips integrated via 3D printing procedures in composite slabs. Under external mechanical loading, the strip magnetization changes due to the magnetoelastic phenomenon. Accordingly, electrical signals may be passively induced in conventional reception coil circuits placed at a distance from the slab. Since these signals quantify the vibrating slab's response, which is affected by the slab's structural integrity, damage may be detected when specific signal characteristics change. Two main issues are examined, namely the ability of receiving meaningful (with respect to noise) electrical signals from the built-in strips despite their contact-less passive reception, and the potential of diagnosing damage using such signals. Hence, slabs of various sizes and levels of structural damage (notches) have been vibrated at different frequencies and amplitudes. Treating the experimental data from integrated strips by applying the proposed processing framework allows for calculating eigen frequencies sensitive to occurring damage (and its severity), as verified by finite element models of the vibrating slabs. Accordingly, damage may be detected and evaluated via the currently proposed experimental testing and analysis framework.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] 3D Printing and Mechanical Properties Optimization of Continuous Carbon Fiber Reinforced Polyphenylene Sulfide Composites
    Xu B.
    Zhang S.
    Shui F.
    Chen T.
    Wang X.
    Yang J.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2022, 38 (07): : 84 - 92
  • [32] 3D compaction printing of a continuous carbon fiber reinforced thermoplastic
    Ueda, Masahito
    Kishimoto, Shun
    Yamawaki, Masao
    Matsuzaki, Ryosuke
    Todoroki, Akira
    Hirano, Yoshiyasu
    Le Duigou, Antoine
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2020, 137 (137)
  • [33] Developments in 3D printing of carbon fiber reinforced polymer containing recycled plastic waste: A review
    Patel, Kautilya S.
    Shah, Dhaval B.
    Joshi, Shashikant J.
    Patel, Kaushik M.
    CLEANER MATERIALS, 2023, 9
  • [34] Carbon Fiber Polymer Reinforced 3D Printed Composites for Centrifugal Pump Impeller Manufacturing
    Mansour, Gabriel
    Papageorgiou, Vasileios
    Tzetzis, Dimitrios
    TECHNOLOGIES, 2024, 12 (04)
  • [35] 3D printing of fiber-reinforced soft composites: Process study and material characterization
    Spackman, Clayson C.
    Frank, Christopher R.
    Picha, Kyle C.
    Samuel, Johnson
    JOURNAL OF MANUFACTURING PROCESSES, 2016, 23 : 296 - 305
  • [36] 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance
    Yang, Chuncheng
    Tian, Xiaoyong
    Liu, Tengfei
    Cao, Yi
    Li, Dichen
    RAPID PROTOTYPING JOURNAL, 2017, 23 (01) : 209 - 215
  • [37] 3D Printing of Ultrahigh Strength Continuous Carbon Fiber Composites
    Parandoush, Pedram
    Zhou, Chi
    Lin, Dong
    ADVANCED ENGINEERING MATERIALS, 2019, 21 (02)
  • [38] 3D Printing of Glass Fiber-Reinforced Polymeric Composites: A Review
    Badogu K.
    Kumar R.
    Kumar R.
    Journal of The Institution of Engineers (India): Series C, 2022, 103 (05): : 1285 - 1301
  • [39] 3D printed fiber reinforced polymer composites - Structural analysis
    Mohammadizadeh, M.
    Imeri, A.
    Fidan, I
    Elkelany, M.
    COMPOSITES PART B-ENGINEERING, 2019, 175
  • [40] 3D printing of plant fiber reinforced polymer composites (PFRC's): an insight into methods, challenges and opportunities
    Salunkhe, Sachin
    Murali, Arun Prasad
    Moneam, Hussein Mohammed Abdel
    Naranje, Vishal
    Shanmugam, Ragavanantham
    POLYMER-PLASTICS TECHNOLOGY AND MATERIALS, 2023, 62 (06): : 816 - 838